Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Artificial neural networks and prostate cancer—tools for diagnosis and management

Abstract

Artificial neural networks (ANNs) are mathematical models that are based on biological neural networks and are composed of interconnected groups of artificial neurons. ANNs are used to map and predict outcomes in complex relationships between given 'inputs' and sought-after 'outputs' and can also be used find patterns in datasets. In medicine, ANN applications have been used in cancer diagnosis, staging and recurrence prediction since the mid-1990s, when an enormous effort was initiated, especially in prostate cancer detection. Modern ANNs can incorporate new biomarkers and imaging data to improve their predictive power and can offer a number of advantages as clinical decision making tools, such as easy handling of distribution-free input parameters. Most importantly, ANNs consider nonlinear relationships among input data that cannot always be recognized by conventional analyses. In the future, complex medical diagnostic and treatment decisions will be increasingly based on ANNs and other multivariate models.

Key Points

  • The use of multivariate mathematical models, including artificial neural networks (ANNs), in clinical medicine has increased markedly in the past decade

  • The majority of prostate cancer ANNs are used for diagnosis and staging, providing useful clinical decision support mechanisms to physicians

  • These models have greater specificity than serum PSA and percent free PSA as sole predictors in the diagnosis of prostate cancer

  • The number of ANNs that can be used for prognosis, recurrence risk and prediction of metastasis is limited

  • For the staging of prostate cancer, Bayesian neural networks might be superior to other ANNs and bivariate logistic regression models

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Basic structure of a feed-forward ANN with error backpropagation for the diagnosis of prostate cancer.

Similar content being viewed by others

References

  1. Sargent, D. J. Comparison of artificial neural networks with other statistical approaches. Cancer 91, 1636–1642 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Schröder, F. & Kattan, M. W. The comparability of models for predicting the risk of a positive prostate biopsy with prostate-specific antigen alone: a systematic review. Eur. Urol. 54, 274–290 (2008).

    Article  PubMed  Google Scholar 

  3. Krogh, A. What are artificial neural networks? Nat. Biotechnol. 26, 195–197 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Finne, P. et al. Predicting the outcome of prostate biopsy in screen-positive men by a multilayer perceptron network. Urology 56, 418–422 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Horninger, W., Bartsch, G., Snow, P. B., Brandt, J. M. & Partin, A. W. The problem of cutoff levels in a screened population. Cancer 91 (Suppl. 8), 1667–1672 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Remzi, M. et al. An artificial neural network to predict the outcome of repeat prostate biopsies. Urology 62, 456–460 (2003).

    Article  PubMed  Google Scholar 

  7. Stephan, C. et al. Multicenter evaluation of an artificial neural network to increase prostate cancer detection rate and reduce unnecessary biopsies. Clin. Chem. 48, 1279–1287 (2002).

    CAS  PubMed  Google Scholar 

  8. Capitanio, U. et al. Predictive models before and after radical prostatectomy. Prostate 70, 1371–1378 (2010).

    PubMed  Google Scholar 

  9. Shariat, S. F., Karakiewicz, P. I., Suardi, N. & Kattan, M. W. Comparison of nomograms with other methods for predicting outcomes in prostate cancer: a critical analysis of the literature. Clin. Cancer Res. 14, 4400–4407 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. McCulloch, W. S. & Pitts, W. The statistical organization of nervous activity. Biometrics 4, 91–99 (1948).

    Article  CAS  PubMed  Google Scholar 

  11. Hebb, D. O. The Organization of Behavior (John Wiley & Sons, New York, 1949).

    Google Scholar 

  12. Rosenblatt, F. The perceptron: a probabilistic model for information storage and organization in the brain. Psychol. Rev. 65, 386–408 (1958).

    Article  CAS  PubMed  Google Scholar 

  13. Picard, R. R. & Berk, K. N. Data splitting. Am. Stat. 44, 140–147 (1990).

    Google Scholar 

  14. Stephan, C. et al. An artificial neural network considerably improves the diagnostic power of percent free prostate-specific antigen in prostate cancer diagnosis: results of a 5-year investigation. Int. J. Cancer 99, 466–473 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Efron, B. & Tibshirani, R. J. An Introduction to the Bootstrap (Chapman & Hall, New York, 1993).

    Book  Google Scholar 

  16. Tafeit, E. & Reibnegger, G. Artificial neural networks in laboratory medicine and medical outcome prediction. Clin. Chem. Lab. Med. 37, 845–853 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Dreiseitl, S. & Ohno-Machado, L. Logistic regression and artificial neural network classification models: a methodology review. J. Biomed. Inform. 35, 352–359 (2002).

    Article  PubMed  Google Scholar 

  18. Anagnostou, T., Remzi, M., Lykourinas, M. & Djavan, B. Artificial neural networks for decision-making in urologic oncology. Eur. Urol. 43, 596–603 (2003).

    Article  PubMed  Google Scholar 

  19. Rodvold, D. M., McLeod, D. G., Brandt, J. M., Snow, P. B. & Murphy, G. P. Introduction to artificial neural networks for physicians: taking the lid off the black box. Prostate 46, 39–44 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Cammann, H., Jung, K., Meyer, H. A. & Stephan, C. Avoiding pitfalls in applying prediction models, as illustrated by the example of prostate cancer diagnosis. Clin. Chem. 57, 1490–1498 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. Schwarzer, G. & Schumacher, M. Artificial neural networks for diagnosis and prognosis in prostate cancer. Semin. Urol. Oncol. 20, 89–95 (2002).

    Article  PubMed  Google Scholar 

  22. Snow, P. B., Smith, D. S. & Catalona, W. J. Artificial neural networks in the diagnosis and prognosis of prostate cancer: a pilot study. J. Urol. 152, 1923–1926 (1994).

    Article  CAS  PubMed  Google Scholar 

  23. Babaian, R. J. et al. Performance of a neural network in detecting prostate cancer in the prostate-specific antigen reflex range of 2.5 to 4.0 ng/mL. Urology 56, 1000–1006 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Chun, F. K. et al. Initial biopsy outcome prediction—head-to-head comparison of a logistic regression-based nomogram versus artificial neural network. Eur. Urol. 51, 1236–1240 (2007).

    Article  PubMed  Google Scholar 

  25. Meijer, R. P. et al. The value of an artificial neural network in the decision-making for prostate biopsies. World J. Urol. 27, 593–598 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Matsui, Y. et al. The use of artificial neural network analysis to improve the predictive accuracy of prostate biopsy in the Japanese population. Jpn J. Clin. Oncol. 34, 602–607 (2004).

    Article  PubMed  Google Scholar 

  27. Stephan, C. et al. Artificial neural network (ANN) velocity better identifies benign prostatic hyperplasia but not prostate cancer compared with PSA velocity. BMC Urol. 8, 10 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Stephan, C. et al. Interchangeability of measurements of total and free prostate-specific antigen in serum with 5 frequently used assay combinations: an update. Clin. Chem. 52, 59–64 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Stephan, C. et al. An artificial neural network for five different assay systems of prostate-specific antigen in prostate cancer diagnostics. BJU Int. 102, 799–805 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Stephan, C. & Cammann, H. ProstataClass [online], (2008).

    Google Scholar 

  31. Stephan, C. et al. Internal validation of an artificial neural network for prostate biopsy outcome. Int. J. Urol. 17, 62–68 (2010).

    Article  PubMed  Google Scholar 

  32. Ecke, T. H. et al. Outcome prediction for prostate cancer detection rate with artificial neural network (ANN) in daily routine. Urol. Oncol. 30, 139–144 (2012).

    Article  PubMed  Google Scholar 

  33. Lawrentschuk, N. et al. Predicting prostate biopsy outcome: artificial neural networks and polychotomous regression are equivalent models. Int. Urol. Nephrol. 43, 23–30 (2011).

    Article  PubMed  Google Scholar 

  34. Lilja, H., Ulmert, D. & Vickers, A. J. Prostate-specific antigen and prostate cancer: prediction, detection and monitoring. Nat. Rev. Cancer 8, 268–278 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Catalona, W. J. et al. Use of the percentage of free prostate-specific antigen to enhance differentiation of prostate cancer from benign prostatic disease: a prospective multicenter clinical trial. JAMA 279, 1542–1547 (1998).

    Article  CAS  PubMed  Google Scholar 

  36. Roddam, A. W. et al. Use of prostate-specific antigen (PSA) isoforms for the detection of prostate cancer in men with a PSA level of 2–10 ng/ml: systematic review and meta-analysis. Eur. Urol. 48, 386–399 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Stephan, C., Lein, M., Jung, K., Schnorr, D. & Loening, S. A. The influence of prostate volume on the ratio of free to total prostate specific antigen in serum of patients with prostate carcinoma and benign prostate hyperplasia. Cancer 79, 104–109 (1997).

    Article  CAS  PubMed  Google Scholar 

  38. Lilja, H., Oldbring, J., Rannevik, G. & Laurell, C. B. Seminal vesicle-secreted proteins and their reactions during gelation and liquefaction of human semen. J. Clin. Invest. 80, 281–285 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Stephan, C. et al. Clinical utility of human glandular kallikrein 2 within a neural network for prostate cancer detection. BJU Int. 96, 521–527 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Stephan, C. et al. Improved prostate cancer detection with a human kallikrein 11 and percentage free PSA-based artificial neural network. Biol. Chem. 387, 801–805 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Stephan, C. et al. Three new serum markers for prostate cancer detection within a percent free PSA-based artificial neural network. Prostate 66, 651–659 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Stephan, C. et al. A (−5, −7) proPSA based artificial neural network to detect prostate cancer. Eur. Urol. 50, 1014–1020 (2006).

    Article  PubMed  Google Scholar 

  43. Catalona, W. J. et al. Serum pro prostate specific antigen improves cancer detection compared to free and complexed prostate specific antigen in men with prostate specific antigen 2 to 4 ng/ml. J. Urol. 170, 2181–2185 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Sokoll, L. J. et al. [−2]Proenzyme prostate specific antigen for prostate cancer detection: a national cancer institute early detection research network validation study. J. Urol. 180, 539–543 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Stephan, C. et al. A [−2]proPSA-based artificial neural network significantly improves differentiation between prostate cancer and benign prostatic diseases. Prostate 69, 198–207 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. Guazzoni, G. et al. Prostate-specific antigen (PSA) isoform p2PSA significantly improves the prediction of prostate cancer at initial extended prostate biopsies in patients with total PSA between 2.0 and 10 ng/ml: results of a prospective study in a clinical setting. Eur. Urol. 60, 214–222 (2011).

    Article  CAS  PubMed  Google Scholar 

  47. Jansen, F. H. et al. Prostate-specific antigen (PSA) isoform p2PSA in combination with total PSA and free PSA improves diagnostic accuracy in prostate cancer detection. Eur. Urol. 57, 921–927 (2010).

    Article  CAS  PubMed  Google Scholar 

  48. Lughezzani, G. et al. Development and internal validation of a prostate health index (phi) based nomogram for predicting prostate cancer at extended biopsy. J. Urol. 188, 1144–1150 (2012).

    Article  PubMed  Google Scholar 

  49. Stephan, C. et al. Multicenter evaluation of [-2]proprostate-specific antigen and the prostate health index for detecting prostate cancer. Clin. Chem. 59, 306–314 (2013).

    Article  CAS  PubMed  Google Scholar 

  50. Stephan, C. et al. Benign prostatic hyperplasia-associated free prostate-specific antigen improves detection of prostate cancer in an artificial neural network. Urology 74, 873–877 (2009).

    Article  PubMed  Google Scholar 

  51. Hessels, D. et al. DD3(PCA3)-based molecular urine analysis for the diagnosis of prostate cancer. Eur. Urol. 44, 8–15 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Haese, A. et al. Clinical utility of the PCA3 urine assay in European men scheduled for repeat biopsy. Eur. Urol. 54, 1081–1088 (2008).

    Article  PubMed  Google Scholar 

  53. Chun, F. K. et al. Prostate cancer gene 3 (PCA3): development and internal validation of a novel biopsy nomogram. Eur. Urol. 56, 659–667 (2009).

    Article  CAS  PubMed  Google Scholar 

  54. Ankerst, D. P. et al. Predicting prostate cancer risk through incorporation of prostate cancer gene 3. J. Urol. 180, 1303–1308 (2008).

    Article  PubMed  Google Scholar 

  55. Ferro, M. et al. Predicting prostate biopsy outcome: prostate health index (phi) and prostate cancer antigen 3 (PCA3) are useful biomarkers. Clin. Chim. Acta 413, 1274–1278 (2012).

    Article  CAS  PubMed  Google Scholar 

  56. Stephan, C. et al. Comparative assessment of urinary prostate cancer antigen 3 and TMPRSS2:ERG gene fusion with the serum [−2]proprostate-specific antigen-based Prostate Health Index for detection of prostate cancer. Clin. Chem. 59, 280–288 (2013).

    Article  CAS  PubMed  Google Scholar 

  57. Aubin, S. M. et al. Improved prediction of prostate biopsy outcome using PCA3, TMPRSS2:ERG gene fusion and serum PSA [abstract 2105]. J. Urol. 179 (Suppl.), 725 (2008).

    Article  Google Scholar 

  58. Groskopf, J. et al. Feasibility and clinical utility of a TMPRSS2:ERG gene fusion urine test [abstract 3]. Eur. Urol. 8 (Suppl.), 195 (2009).

    Article  Google Scholar 

  59. Tomlins, S. A. et al. Urine TMPRSS2:ERG fusion transcript stratifies prostate cancer risk in men with elevated serum PSA. Sci. Transl. Med. 3, 94ra72 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Panebianco, V. et al. Conventional imaging and multiparametric magnetic resonance (MRI, MRS, DWI, MRP) in the diagnosis of prostate cancer. Q. J. Nucl. Med. Mol. Imaging 56, 331–342 (2012).

    CAS  PubMed  Google Scholar 

  61. Lee, F. et al. Transrectal ultrasound in the diagnosis of prostate cancer: location, echogenicity, histopathology, and staging. Prostate 7, 117–129 (1985).

    Article  CAS  PubMed  Google Scholar 

  62. Shinohara, K., Scardino, P. T., Carter, S. S. & Wheeler, T. M. Pathologic basis of the sonographic appearance of the normal and malignant prostate. Urol. Clin. North Am. 16, 675–691 (1989).

    CAS  PubMed  Google Scholar 

  63. Ronco, A. L. & Fernández, R. Improving ultrasonographic diagnosis of prostate cancer with neural networks. Ultrasound Med. Biol. 25, 729–733 (1999).

    Article  CAS  PubMed  Google Scholar 

  64. Loch, T. et al. Artificial neural network analysis (ANNA) of prostatic transrectal ultrasound. Prostate 39, 198–204 (1999).

    Article  CAS  PubMed  Google Scholar 

  65. Lee, H. J. et al. Role of transrectal ultrasonography in the prediction of prostate cancer: artificial neural network analysis. J. Ultrasound Med. 25, 815–821 (2006).

    Article  PubMed  Google Scholar 

  66. Poulakis, V. et al. Preoperative neural network using combined magnetic resonance imaging variables, prostate-specific antigen, and Gleason score for predicting prostate cancer biochemical recurrence after radical prostatectomy. Urology 64, 1165–1170 (2004).

    Article  PubMed  Google Scholar 

  67. Poulakis, V. et al. Preoperative neural network using combined magnetic resonance imaging variables, prostate specific antigen and Gleason score to predict prostate cancer stage. J. Urol. 172, 1306–1310 (2004).

    Article  PubMed  Google Scholar 

  68. Poulakis, V. et al. Preoperative neural network using combined magnetic resonance imaging variables, prostate specific antigen, and Gleason score to predict prostate cancer recurrence after radical prostatectomy. Eur. Urol. 46, 571–578 (2004).

    Article  PubMed  Google Scholar 

  69. Poulakis, V. et al. Preoperative neural network using combined magnetic resonance imaging variables, prostate-specific antigen, and Gleason score to predict positive surgical margins. Urology 64, 516–521 (2004).

    Article  PubMed  Google Scholar 

  70. Porter, C. R. & Crawford, E. D. Combining artificial neural networks and transrectal ultrasound in the diagnosis of prostate cancer. Oncology (Williston. Park) 17, 1395–1399 (2003).

    Google Scholar 

  71. Naguib, R. N., Robinson, M. C., Neal, D. E. & Hamdy, F. C. Neural network analysis of combined conventional and experimental prognostic markers in prostate cancer: a pilot study. Br. J. Cancer 78, 246–250 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Tewari, A. & Narayan, P. Novel staging tool for localized prostate cancer: a pilot study using genetic adaptive neural networks. J. Urol. 160, 430–436 (1998).

    Article  CAS  PubMed  Google Scholar 

  73. Borque, A. et al. The use of neural networks and logistic regression analysis for predicting pathological stage in men undergoing radical prostatectomy: a population based study. J. Urol. 166, 1672–1678 (2001).

    Article  CAS  PubMed  Google Scholar 

  74. Veltri, R. W. et al. Comparison of logistic regression and neural net modeling for prediction of prostate cancer pathologic stage. Clin. Chem. 48, 1828–1834 (2002).

    CAS  PubMed  Google Scholar 

  75. Zlotta, A. R. et al. An artificial neural network for prostate cancer staging when serum prostate specific antigen is 10 ng/ml or less. J. Urol. 169, 1724–1728 (2003).

    Article  PubMed  Google Scholar 

  76. Han, M., Snow, P. B., Brandt, J. M. & Partin, A. W. Evaluation of artificial neural networks for the prediction of pathologic stage in prostate carcinoma. Cancer 91, 1661–1666 (2001).

    Article  CAS  PubMed  Google Scholar 

  77. Gamito, E. J., Stone, N. N., Batuello, J. T. & Crawford, E. D. Use of artificial neural networks in the clinical staging of prostate cancer: implications for prostate brachytherapy. Tech. Urol. 6, 60–63 (2000).

    CAS  PubMed  Google Scholar 

  78. Batuello, J. T. et al. Artificial neural network model for the assessment of lymph node spread in patients with clinically localized prostate cancer. Urology 57, 481–485 (2001).

    Article  CAS  PubMed  Google Scholar 

  79. Chakraborty, S., Ghosh, M., Maiti, T. & Tewari, A. Bayesian neural networks for bivariate binary data: an application to prostate cancer study. Stat. Med. 24, 3645–3662 (2005).

    Article  PubMed  Google Scholar 

  80. Regnier-Coudert, O. et al. Machine learning for improved pathological staging of prostate cancer: a performance comparison on a range of classifiers. Artif. Intell. Med. 55, 25–35 (2012).

    Article  PubMed  Google Scholar 

  81. Mattfeldt, T., Kestler, H. A., Hautmann, R. & Gottfried, H. W. Prediction of postoperative prostatic cancer stage on the basis of systematic biopsies using two types of artificial neural networks. Eur. Urol. 39, 530–536 (2001).

    Article  CAS  PubMed  Google Scholar 

  82. Matsui, Y. et al. Artificial neural network analysis for predicting pathological stage of clinically localized prostate cancer in the Japanese population. Jpn J. Clin. Oncol. 32, 530–535 (2002).

    Article  PubMed  Google Scholar 

  83. Walsh, P. C., Partin, A. W. & Epstein, J. I. Cancer control and quality of life following anatomical radical retropubic prostatectomy: results at 10 years. J. Urol. 152, 1831–1836 (1994).

    Article  CAS  PubMed  Google Scholar 

  84. Mattfeldt, T., Kestler, H. A., Hautmann, R. & Gottfried, H. W. Prediction of prostatic cancer progression after radical prostatectomy using artificial neural networks: a feasibility study. BJU Int. 84, 316–323 (1999).

    Article  CAS  PubMed  Google Scholar 

  85. Porter, C. et al. Artificial neural network model to predict biochemical failure after radical prostatectomy. Mol. Urol. 5, 159–162 (2001).

    Article  CAS  PubMed  Google Scholar 

  86. Han, M. et al. A neural network predicts progression for men with Gleason score 3+4 versus 4+3 tumors after radical prostatectomy. Urology 56, 994–999 (2000).

    Article  CAS  PubMed  Google Scholar 

  87. Potter, S. R. et al. Genetically engineered neural networks for predicting prostate cancer progression after radical prostatectomy. Urology 54, 791–795 (1999).

    Article  CAS  PubMed  Google Scholar 

  88. Ziada, A. M. et al. Impact of different variables on the outcome of patients with clinically confined prostate carcinoma: prediction of pathologic stage and biochemical failure using an artificial neural network. Cancer 91 (Suppl. 8), 1653–1660 (2001).

    Article  CAS  PubMed  Google Scholar 

  89. Tewari, A. et al. Genetic adaptive neural network to predict biochemical failure after radical prostatectomy: a multi-institutional study. Mol. Urol. 5, 163–169 (2001).

    Article  CAS  PubMed  Google Scholar 

  90. Shariat, S. F., Karakiewicz, P. I., Roehrborn, C. G. & Kattan, M. W. An updated catalog of prostate cancer predictive tools. Cancer 113, 3075–3099 (2008).

    Article  PubMed  Google Scholar 

  91. Abdel-Wahab, M. et al. ACR Appropriateness Criteria® external-beam radiation therapy treatment planning for clinically localized prostate cancer. J. Am. Coll. Radiol. 9, 233–238 (2012).

    Article  PubMed  Google Scholar 

  92. Wells, D. M. & Niederer, J. A medical expert system approach using artificial neural networks for standardized treatment planning. Int. J. Radiat. Oncol. Biol. Phys. 41, 173–182 (1998).

    Article  CAS  PubMed  Google Scholar 

  93. Lennernäs, B., Sandberg, D., Albertsson, P., Silén, A. & Isacsson, U. The effectiveness of artificial neural networks in evaluating treatment plans for patients requiring external beam radiotherapy. Oncol. Rep. 12, 1065–1070 (2004).

    PubMed  Google Scholar 

  94. Gulliford, S. L., Webb, S., Rowbottom, C. G., Corne, D. W. & Dearnaley, D. P. Use of artificial neural networks to predict biological outcomes for patients receiving radical radiotherapy of the prostate. Radiother. Oncol. 71, 3–12 (2004).

    Article  PubMed  Google Scholar 

  95. Pella, A. et al. Use of machine learning methods for prediction of acute toxicity in organs at risk following prostate radiotherapy. Med. Phys. 38, 2859–2867 (2011).

    Article  PubMed  Google Scholar 

  96. Shariat, S. F., Karakiewicz, P. I., Margulis, V. & Kattan, M. W. Inventory of prostate cancer predictive tools. Curr. Opin. Urol. 18, 279–296 (2008).

    Article  PubMed  Google Scholar 

  97. Chiu, J. S. et al. Artificial neural network to predict skeletal metastasis in patients with prostate cancer. J. Med. Syst. 33, 91–100 (2009).

    Article  PubMed  Google Scholar 

  98. Jung, K., Miller, K., Wirth, M., Albrecht, M. & Lein, M. Bone turnover markers as predictors of mortality risk in prostate cancer patients with bone metastases following treatment with zoledronic acid. Eur. Urol. 59, 604–612 (2011).

    Article  CAS  PubMed  Google Scholar 

  99. Kawakami, S. et al. Development, validation, and head-to-head comparison of logistic regression-based nomograms and artificial neural network models predicting prostate cancer on initial extended biopsy. Eur. Urol. 54, 601–611 (2008).

    Article  PubMed  Google Scholar 

  100. Ecke, T. H. et al. External validation of an artificial neural network and two nomograms for prostate cancer detection. ISRN Urol. 2012, 643181 (2012).

    PubMed  PubMed Central  Google Scholar 

  101. Center, M. M. et al. International variation in prostate cancer incidence and mortality rates. Eur. Urol. 61, 1079–1092 (2012).

    Article  PubMed  Google Scholar 

  102. Finne, P. et al. Algorithms based on prostate-specific antigen (PSA), free PSA, digital rectal examination and prostate volume reduce false-positive PSA results in prostate cancer screening. Int. J. Cancer 111, 310–315 (2004).

    Article  CAS  PubMed  Google Scholar 

  103. Stephan, C. et al. Comparison of two different artificial neural networks for prostate biopsy indication in two different patient populations. Urology 70, 596–601 (2007).

    Article  PubMed  Google Scholar 

  104. Gosselaar, C., Kranse, R., Roobol, M. J., Roemeling, S. & Schroder, F. H. The interobserver variability of digital rectal examination in a large randomized trial for the screening of prostate cancer. Prostate 68, 985–993 (2008).

    Article  CAS  PubMed  Google Scholar 

  105. Pierorazio, P. M. et al. Preoperative characteristics of high-Gleason disease predictive of favourable pathological and clinical outcomes at radical prostatectomy. BJU Int. 110, 1122–1128 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are supported by the Berliner Sparkassenstiftung Medizin and the Wilhelm Sander-Stiftung (grant 2010.111.1).

Author information

Authors and Affiliations

Authors

Contributions

X. Hu, H.-A. Meyer and C. Stephan researched the data for the article. H. Cammann, H.-A. Meyer, K. Jung and C. Stephan contributed to discussions of content. X. Hu, H. Cammann, K. Jung and C. Stephan wrote the manuscript, and X. Hu, K. Miller, K. Jung and C. Stephan edited the manuscript before submission.

Corresponding author

Correspondence to Carsten Stephan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, X., Cammann, H., Meyer, HA. et al. Artificial neural networks and prostate cancer—tools for diagnosis and management. Nat Rev Urol 10, 174–182 (2013). https://doi.org/10.1038/nrurol.2013.9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2013.9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing