COMPUTATION:

FINITE AND
INFINITE MACHINES

MARVIN L. MINSKY

Professor of Electrical Engineering
Massachusetts Institute of Technology

PRENTICE-HALL, INC.
ENGLEWOOD CLIFFS, N. J.



© 1967 by
Prentice-Hall, Inc.
Englewood Cliffs, N. J.

All rights reserved.

No part of this book may

be reproduced in

any form or by any means
without permission in writing
from the publisher.

Current printing (last digit):
15 14

Library of Congress Catalog Card No. 67-12342
Printed in the United States of America



'l 4 VERY SIMPLE BASES
FOR COMPUTABILITY

14.1 UNIVERSAL PROGRAM MACHINES
WITH TWO REGISTERS

In section 11.1 we introduced ‘“‘program machines” which could
compute any recursive function by executing programs, made up of the
two operations below, on the contents of registers—number-containing
cells.

Add unity to the number in register a, and go
to next instruction.

a (n) [f the number in a is not zero, then subtract 1
from a and go to the next instruction, other-
wise go to the nth instruction.

We showed, in 11.2, that these operations working on just five registers
were enough to construct an equivalent of any Turing machine, and we
remarked in 11.4 that this could be done with just two registers; we will
now prove this. But our purpose is nct merely to reduce the concept of
program machine to a minimum, but to also use this result to obtain a
number of otherwise obscure theorems.

We recall (from 11.4) that the operation ; l.e., put zero in register a,

can be simulated if we have a register w already containing zero: then we

can also use w (n) as a instruction.

For our purposes here it is more convenient to assume that we have

255
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, la “(n)], and |go(n)| at the start. Then
|

5
2

will serve as a® and we can assume that we have

a®  a(n) a

" go(n)

These are the only operations that appear in the diagram of 11.2, so they
are shown to be all we need to simulate any Turing machine.

To reduce the machine of Fig. 11.2-1 to one with just two registers r
and s, we will “simulate” a larger number of virtual registers by using an
elementary fact about arithmetic—namely that the prime-factorization of
an integer is unique. Suppose, for example, that we want to simulate
three registers x, y, and z. We will begin by placing the number 2*3’5°
in register r and zero in register s. The important thing is that from the
single number 2*3757 one @an recover the numbers x, y, and z simply by
determining how many times the number can be divided by 2, 3, and 5
respectively. For example, if » = 1440, then x = 5, y = 2, and z = .
For our purposes, we have only to show how we can obtain the effect of
the operations x'and x ~, y’and y ", and z’ and z".

INCREMENTING

Suppose we want to increment x, that is, add unity to x. This means
that we want to replace 2*3”52 by 2**!3¥5% = 2.2*3%5*, But this is the
same as doubling the number in r! Similarly, incrementing y and z is
trebling and quintupling (respectively) the contents of r. And this is done
by the programs of Fig. 14.1-1. The first loop in each program counts r
down while counting s up twice (or three or five times) as fast; the second
loop transfers the contents of s back intor.

l |
T —— G T m——— [ e &
sl (I’l Sl (r/ S: (rl
s’ go s' go s go

go s’ s

go s

sl

(1) * 90

@ 1




sEC. 14.1 VERY SIMPLE BASES FOR COMPUTABILITY 257

DECREMENTING

Subtracting unity from x is a little more tricky, since we have to
determine whether x is zero; if x is zero, we want to leave it unchanged and
doa . If x is not zero, then we want to change 2*3*5% into 2*7!375* —

that is, divide the contents of r by two. Similarly, decrementing y and z is
(conditional on not being zero) equivalent to dividing by three and five.
We illustrate in Fig. 14.1-2 a program for the 5-case.

- I3
r r

- !
r /_Vf

- 2
r —) r
,.: A\I-_.»rl
r L 2 — >
s 5= s~
go (r' go »>(if 2 was zero)

go
Fig. 14.1-2

The loop to the left does the division, by repeated subtraction. If the
division comes out exact—that is, has no remainder—then the lower loop
copies the quotient back into r. If the division was inexact (i.e., if z was
zero), the loop to the right first restores the remainder (which at that
moment is stored in the state of the machine—i.e., the location in the
program) and then multiplies the quotient by the divisor, putting the
result (which is the original contents) back into r.

This is all we have to show, for clearly we can do the same for the five
registers mentioned in 11.2. We simply put in r the number 273"5%711"
and use the same techniques given just above. To build a program ma-
chine equivalent to that of Fig. 11.2-1, we take that diagram and replace
each of its individual instructions by a copy of the equivalent program
structure we have just developed. This proves:

THEOREM 14.1-1

For any Turing machine T there exists a program machine M ; with
just two registers that behaves the same as T (in the sense described in
sections 10.1 and 11.2) when started with zero in one register and 2°3™5"

in the other. This machine uses only the operations [l and [=] ., assuming

that the successor instruction contains the “go’’ information for the next
instruction.
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REMARK

Now that we know there are universal program machines that use only rwo
registers, we can improve the result of section 12.8. For such a machine
there are just four kinds of instructions: ‘“‘add 1 to R;,” “add 1 to R,,”
“subtract (conditional) 1 from R,” ‘“subtract (conditional) 1 from R,.”
In such a machine, we can omit the R letters and just use the I’s to separate
the two registers, so that we can have a canonical system for such a machine
with simple productions like

$17;8, — $110,:1%,
for addition, and
$1/i18, — $,7;,1$;
$1; — $1;

for the conditional subtraction.

14.2 UNIVERSAL PROGRAM-MACHINE WITH
ONE REGISTER

We can get an even stronger result if we admit multiplication and
division operations (by constants) as possible machine instructions, for
then we can do everything with a single register! The proof of theorem
14.1-1 shows that we need only a single register if we can perform on it the
operations “multiply by 2 (or 3, 5,7, 11)” and “*divide by 2 (or 3, 5, 7, 11)
conditionally upon whether the division is exact.” Now one last observa-
tion. The proof of theorem 14.1-1 shows that the effects of multiplication
by 2 (or by 3) and division by 2 (or by 3) on a number of the form 2*3” are
precisely the same as the effects of incrementing x (or y) and decrementing
x (or y). Furthermore, by theorem 14.1-1, we don’t really need anything
but these four operations, if we are willing to raise our numbers up to
another exponent level. Thus, by applying the result of theorem 14.1-1 to
its own proof (!) we obtain:

THEOREM 14.2-1

For any Turing machine T there exists a program machine M*T‘ with just
one register that behaves the same as T (in the usual sense) when started with

am.n

2% - 3in its register. This machine uses only the operations of multi-
plication and (conditional) division by integers 2 and 3.

PROBLEM 14.2-1. Verify the correctness of this fast-talking proof for
Theorem 14.2-1.

PROBLEM 14.2-2. In both theorems 14.1-1 and 14.2-1, the final result was
a program machine with four instruction types. In one case there were two
operations that could each be applied to each of two registers; in the other
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case, there were four operations -on one register. Show that in each case we
can reduce the number to three, by replacing two of them with one that af-
fects both numbers or registers. For example, in the machine M1 we can
eliminate s~ and s’ if we keep r~ and r' and adjoin exchange (r, s). In M%
we can use multiply by 6, divide by 3, and divide by 2. We can even reduce
the basis to two instructions: Show that for machine My it is sufficient to
have:

Add 1 to r and exchange r and s.

If r is not zero, subtract 1 from r and exchange;

otherwise exchange and go(n).

A slight change in input form is required.

DISCUSSION

Theorem 14.2-1 looks, superficially, like a better result than theorem
[4.1-1, since one register is less than two. However, from the point of
view of Turing’s argument (chapter 5), we prefer theorem 14.1-1 because
we can think of m’, m~, n', and n~ as unitary, basic, finite actions. On the
other hand, the operation of multiplying the contents of a register by two
cannot be regarded as a fixed, finite action, because the amount of work
involved must grow with the size of the number in the register, beyond
any fixed bound. (The same objection could be held against theorem
14.1-1 if the number in the register is represented as a binary string. It
must be unary. Why?)

14.3 GODEL NUMBERS

The methods of section 14.1 draw their surprising power from the
basic fact that one can represent any amount of information by selecting a
single integer— or, more precisely, that one can effectively compute such
an integer and effectively recover the information from it. Thus, in the
proof of theorem 14.1-1 we take an arbitrary quadruple (m, n, a, z) of
integers and encode them into the single integer 273"5°7%. There is nothing
new here, for in our original arithmetization of Turing machines (section
10.1) we use the numbers m and n themselves to represent arbitrary
sequences of 1I’s and 0’s, and in our discussion (10.3) of enumeration of
the partial-recursive functions we envisioned an even more complex en-
coding of information into single integers. In 12.3 we showed that a single
integer could represent an arbitrary list of lists of letters from an alphabet.
More generally, as was apparently first pointed out by Godel [1931}, a
single integer representation can represent an arbitrary list structure (see
also 10.7). Let us define such a correspondence, inductively:

If K is a number, then K* = 2%
If Kisalist(a, b,c,d,...), then K* = 35" 77114 .
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For example,
3* = 23

|
o
[
W
[
~J
[

(2, 4, 6)* -

(1,(2,3),4)* = 3> .5 = .72
(0,(0,0)* = 3.5
PROBLEM 14.3-1. Show that any two different list structures of integers

yield different *-numbers, and describe an effective procedure to recover
the list structure from the *-number.

PROBLEM 14.3-2. Which of the following definitions have the property
that the list structure can be unambiguously recovered from the number?

) K* = K (if K is a number)
K* — 203b%5ctqds (ifK = (a,b,c,d,...))
K* = 2K (K a number)
(2) a*c b¥mc* d* .
K* = 3957119 .. (K alist)
K* = 3% (K a number)
(3) * * * *
297287 0%
K* =37 5% 7% 11° ... (K alist)

The idea of a Godel numbering was important in mathematical logic
because while that subject is, on the surface, concerned with notions of
number and the foundations of mathematics, it has come more and more
to be a theory of mathematical theories. It is possible to use the number-
theoretic formalisms, as Godel showed, to talk about the sentences of the
theory (and sentences are not numbers) by assigning numbers to sentences
and properly interpreting corresponding numbers. In particular this
makes it possible to interpret a theory as talking about its own sentences,
without paradoxes; and G6del proved his celebrated theorem, about the
impossibility of a non-contradictory theory containing a proof of its self-
consistency, using this technique. More recently it has been noted that
one can use numbering schemes much simpler than Godel’s for the same
effect, avoiding number-theory facts like the unique-factorization theo-
rem. The methods of Smullyan [1961] are particularly elegant; Smullyan
was strongly influenced by Post’s inclination to deal directly with sym-
bolic expressions rather than numerical representations of them. (So was
I, for example, in the proof of theorem 13.3-1). But I believe methods like
those of section 10.7, or those of 13.3, that step around arithmetic en-
tirely, are ultimately the clearest and most illuminating.
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14.4 TWO-TAPE NON-WRITING
TURING MACHINES

It is easy enough to generalize the idea of a Turing machine to a ma-
chine with two or more tapes. One way to do this is to specify, with each
state of the Turing machine, what it is to do with each tape (what to write,
and which way to move) for each combination of symbols seen at the set of
reading heads. In this formulation one would use, instead of the quintuple
(4:, 855 g5, 51, i) of the ordinary machine, a specification like the follow-
ing—for K tapes, a 2K + 3-tuple:

(4 Siyoigor disiyevigs Siyyviggr o0 Sigy | iggo Dinu."llo T DiKl"'iKK)

Another, more convenient, way to describe a multi-tape machine woula
be in terms of a program machine whose instructions include:

Move tapej in direction d.
Write symbol s; on tape .
If headj reads s;, go to instruction. ...

As we know, it is very hard to construct Turing machines to do tasks of
any significant complexity, even for theoretical purposes, and no one
would consider using one for a practical purpose. It is much easier to
sketch out the organization of a multi-tape Turing machine for a complex
computation if one simply assigns different tapes to different memory
functions; then it is not necessary to resort to tricky punctuation devices.
For example, it is very easy to describe a universal Turing machine using
two tapes—one for simulating the tape of, and one for holding the
description of, the (one-tape) machine being imitated.

PROBLEM. Show how to construct a simple universal machine using two
tapes.

It should come as no surprise that, in spite of the greater apparent
power of multi-tape machines, their ultimate computation range is the
same as usual, namely, the computation of any partial-recursive function.
This can be shown by describing how to make a conventional, one-tape,
Turing machine that imitates K-tape machines.

In our original, heavy-handed construction of a universal Turing
machine (section 7.3), we reserved two regions of a machine’s tape for
different purposes. One of these—the description region—was finite, but
it could just as well have been infinite. The same method won’t work for
more than two tapes, of course, since a tape has only two directions; but
one can get the effect of K tapes simply by assigning every Kth square of
the tape to be used for imitating a given tape. We leave the construction
as an exercise.
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PROBLEM. Show that any K-tape machine can be simulated by a one-tape
machine.

Although K-tape machines, in general, are equivalent to one-tape
machines, this conceivably might not be so if we impose restrictions on
what can be done with the tapes. It comes, therefore, as something of a
surprise that:

THEOREM 14.4-1

Any computation that can be done by a Turing machine can be simulated
by a machine with two semi-infinite (single-ended) tapes which can neither

read nor write on its tapes, but can only sense when a tape has come 10 its
end.

In view of theorem 14.1-1, the proof is hardly worth writing down.
We use the length from the reading heads to the ends of the two tapes as
our representation of m and n; the operations m’ and n’ move the heads
away from the ends, and m~ and n- move the heads towards the ends,
conditional on reaching an end of tape.

Another consequence of the same situation is this corollary:

COROLLARY 14 .4-1

Any Turing-machine compultation can be simulated by a Turing machine
whose tape is always entirely blank, save for ar most three 1’s.

For one can construct a Turing machine, equivalent in the (m, n) sense
to the given machine, which works with a tape of the form

000...0 ¢ 0...(mzeros)...0 | 0...(nzeros)...0 10

PROBLEM. Show how to construct the machine for the proof of the
corollary,

14.5 UNIVERSAL NON-ERASING
TURING MACHINES

We can now demonstrate the remarkable fact, first shown by Wang
[1957], that for any Turing machine 7 there is an equivalent Turing ma-
chine Ty that never changes a once-written symbol! In fact, we will con-
struct a two-symbol machine 7' that can only change blank squares on its
tape to 1’s but can not change a 1 back to a blank.

Our proof will have two parts. First we will show, given T, how to
make an equivalent machine I’y that uses four symbols 0, A, B, C and is
subject to the symbol-changing restriction that the only changes permitted
are

O~>A,O—+B,O->C,A‘>B,A—>C,B‘>C
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Then we will show how to make the non-erasing machine Ty out of this
T by making the two-symbol Ty work with its tape-squares grouped into
binary triplets, so that we can make the identification:

v symbols T y symbols
0o -
A — [1]0]0
B
c -

The point is that the permitted symbol-changes in Ty correspond to
changes for Ty that only transform 0’s to 1’s: no 1’s need ever be changed
to 0’s.

THEOREM 14.5-1

For any Turing machine T there is an equivalent two-symbol machine
which can only print 1’s on blank squares but can never erase a 1, once
printed.

Proof: First we construct the machine Ty mentioned above. Ty will
work with our standard two-integer (m, n) representation for the content
of a Turing-machine tape, and we will represent the state of T's tape of
the form

. CCCC...CCCBB...BBAA...AA000...000...

where there are m B’s, n A’s, and any number of C’s to the left. We have
only to show that we can make state diagrams that will perform the basic

1

m’ :@C :%B»E//A/;To next instruction
B

L = ¢©C ,@O A +To next instruction
m- = : C @ C »To next instruction

—3-Tq zero—branch
instruction

A B"’"'—*‘TO next instruction
N NG 45
no|= >LF 2 ¢ By
Q O T B=——= 1o zero-branch
instruction

Fig. 14.5-1
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operations of theorem 14.1-1, namely, m’, n’, m~, and n~; the latter being
conditional on whether m and n are already zero. That is, we have to
show that we can increment and (conditionally) decrement m and n—the
numbers of B’s and A’s on Tj-s tape, without violating the symbol-
changing restrictions. Now consider the four state diagrams in Fig.
14.5-1. These do exactly what is wanted. For example, apply the state-
diagram for n~ to the strings for (m, n) = (2, 1) and (2, 0), starting some-
where to the right in each case:

(m,n) = (2,1 (m,n) = (2,0)
.CCCBBAQOO . .. ...CCCBBQOO . ..
.CCCBBAOOO . . . ...CCCBBOOO . ..
.CCCBBAOOO . . . ...CCCBBOOO . ..
.CCCBBAOOO . .. ...CCCBB0OOO . ..
.CCCCBAOOO . . . ...CCCCB0OOO . ..
.CCCCBAOOO . .. ...CCcCCBOOO . ..

..CCCCBBOOO . .. ...CCCCBBOO . ..
“to next instruction” ‘““to zero-branch instruction”

In each case the machine first runs to the left until it encounters the block

of C’s. (It will never move left of the rightmost C.) It then starts back
to the right to perform the desired operation. Only operation n~ has any
subtlety at all; the machine is supposed to “‘erase’” an A (if there is one);
it can only do this by changing that 4 to a higher letter— B or C. It pre-
pares for this by removing the leftmost B (if there is one); when it meets
an A, it will change this to a B, thus reducing the number of 4’s and re-
storing the number of B’s. The reader can verify that we have also ac-
counted for the exceptional case in which there is no B; finally, in the
case that there is no A (that is, if n = 0), B is unchanged but the machine
takes a different exit from the state-diagram. Note also that in each case
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the machine ends somewhere to the right of the block of C’s, so that we
can safely link the output of one diagram to the input of another.

To obtain the machine T we now simply find a program machine
equivalent to T by using theorem 14.1-1. Then we take each instruction of
the program machine and replace it by the appropriate one of the four
state-diagram machines just exhibited. Last, we realize the “jump’ or
“control” structure of the program machine by making corresponding
connections of the inputs and outputs of our set of little state diagrams.
Since none of the state diagrams violate the symbol-changing restriction,
we have constructed T as required.

To complete the proof of theorem 14.5-1, we have only to show how to
convert Ty into a two-symbol non-erasing machine Ty. To do this, we
have to provide the mechanism, mentioned earlier, through which Ty
will work with its tape as though it were formed of triplets of squares. We
will do this by replacing each state of Ty by a state network that operates
on triplets of squares in accord with

0 < J0[OOR, 4 < IOPE, B < IN0OE, C <~ AMNIE

For example, the state of @-C> which means “move left (by triplets)

until encountering the triplet [11]1]. is realized in Tx by the network of

Fig. 14.5-2, where the loop-structure is used to make sure that the system
always moves three squares. The right-moving states of T’y are replaced
by similar structures; for example, the right side of Fig. 14.5-3 would re-
place the left side, and the right side of Fig. 14.5-4 would replace the left
side. The latter example shows again how a searching state keeps moving
along by repeating triplets until it finds one of the symbols it is searching
for.

C —
"""@‘*- 0 0
1 1
R ? ~ -
1 L g

L >
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O———-> 100=4

0 A =

A.—.C-)-

Ay 1= 111=C
c C —p-

Qe 110=§8
:{/‘?l
1 1M1 =C

Fig. 14.5-3

PROBLEM. The machine T just described wipes out all prior records of
its computation, by changing all old symbols to C’s. It is possible to make
a machine similar in operation except that a permanent record of all prior
steps in the computation (that is, all steps of the original machine 7, being
simulated) is retained. Construct such a machine T}, with the property
that, if (m,, n,) are the (m, n)-representation of T°s tape at time 1,
then TMS tape at time ¢ has the form weynymyn,. . .mm,.. . in some
straightforward sense. For example, one can use a five-level “‘non-erase”
encoding

VEEE...EEED '‘C'D *...p "¢ B "4 000 000

First make a state diagram that will “‘copy” mn, by converting the above
string into

ml Ill m2 m[_l Vn,_l ml ”I "1’ 'll
.EEE. . _EEED 'C 'D “...D C D "C'B "4 °000...

and then show how to modify the “‘copy’ structure to realize each of the
operations m', n', m~, n”, without violating the symbol-changing restric-
tions. Compare this system with the universal Post system of theorem
13.3-1, which also keeps a record of all previous work.

0
///J:j——-o——e—no=5

0_g—»
-~RX O— 110= 8
7 B

1

o M o

5

Fig. 14.5-4
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14.6 THE PROBLEM OF “TAG'' AND
MONOGENIC CANONICAL SYSTEMS

While a graduate student at Princeton in 1921, Post [1965] studied a
class of apparently simple but curiously frustrating problems of which the
following is an example:

Given a finite string S of 0’s and 1’s, examine the first letter of S. If it
is 0, delete the first three letters of S and append 00 to the result. If
the first letter is 1, delete the first three letters and append 1101. Per-
form the same operation on the resulting string, and repeat the process
so long as the resulting string has three or more letters.

For example, if the initial string is 10010, we get

10010
101101
1011101
11011101
111011101

0t11011101
101110100
1101001101
10011011101
110111011101
1110111011101
Q1110111011101
1011101110100
11011101001101
111010011011101
0100110111011101
)QIIOlllOIlIOIQQ
01110111010000
1011101000000
repeats 11010000001101

100000011011101
0000110111011101
€011011101110100

The string has grown, but it has just repeated itself (and hence will con-
tinue to repeat the last six iterations forever). Suppose that we start with
a different string S’. The reader might try, for example, (100)’, that is,
100100100100100100100, but he will almost certainly give up without
answering the question: “Does this string, too, become repetitive?”’  In
fact, the answer to the more general question “Is there an effective way
to decide, for any string S, whether this process will ever repeat when
started with S is still unknown. Post found this (00, 1101) problem
“intractable,” and so did I, even with the help of a computer. Of course,
unless one has a theory, one cannot expect much help from a computer
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(unless it has a theory) except for clerical aid in studying examples; but if
the reader tries to study the behavior of 100100100100100100 without
such aid, he will be sorry.

Post mentions the (00, 1101) problem, in passing, in his [1943] paper—
the one that announces the normal-form theorem--and says that “‘the
little progress made in the solution . .. of such problems make them candi-
dates for unsolvability.”” As it turns out he was right.  While the solva-
bility of the (00, 1101) problem is still unsettled (some partial results are
discussed by Watanabe [1963]), it is now known that some problems of
the same general character are unsolvable. Even more interesting is the
fact that there are systems of this class that are universal in the sense of
theorem 14.1-1; namely, there is a way to simulate an arbitrary Turing-
machine computation within a “‘tag" system.

DEFINITION

A tag system is a Post normal canonical system that satisfies the condi-
tions: If 4 = (a,,...,a,)is the alphabet of the system, and

g[$-‘»$h,' (121,,,1)
are its productions, then

(1) All the antecedent constant strings g; have
the same length P.

(2) The consequent string /4, depends only on the
first letter of the associated g,.

For example, in the (00, 1101) problem just mentioned, there are really
eight productions, forming the system with P = 3:

000$ — $00 100$ — $1101
001$ — $00 101$ — $1101
010$ — $00 110$ — $1101
011$ — $00 111$ — $1101

Because of the fact that the consequent 4, is determined by the first letter
only of g;, and that the number of letters in the g's is a constant P, the tag
systems all have the character of the (00, 1101) problem; namely, to oper-
ate a tag system, one has:to:

Read the first letter a;.

Erase P letters from the front of the string.
Append the associated consequent string 4, to the
end of the string.

It is very important to observe that the very definition of a tag system
gives it a property not found, generally, in normal or other canonical Sys-
tems; namely, a tag system is monogenic.
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DEFINITION

A Post canonical system (or any other logical string-manipulation
system) is monogenic if, for any string S, there is at most one new string
S’ that can be produced from it (in one step).

Clearly a tag system is monogenic since, for any string, what happens
to it depends only on its first letter; two different strings can be produced
only if a string has two different first letters, which would be absurd.
What is the importance of the monogenic property? It is that, if a string-
manipulation system is monogenic, then it is like a machine in all im-
portant respects, for it defines a definite process or sequence of things
that happen—and these can be regarded as happening in real time, rather
than as mere theorems about an unchanging mathematical world or
space.

In fact, one can imagine a special machine associated with a tag sys-
tem. (See Fig. 14.6-1.) This machine is a little like a Turing machine
except that

(1) There are two heads, one for reading and one for
writing.

(2) The tape begins at a source, runs through the
writing head, has an arbitrarily long piece of *‘slack,”

Fig. 14.6-1
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then runs through the reading head, and finally dis-
appears forever into a “sink.” It can move only in one
direction.

(3) The finite-state part of the machine must be able to
read a symbol, advance the tape P squares, and write
the appropriate 4; with the write head. Bur otherwise,
the machine has no internal states!

Note that the tag machine cannot erase a symbol. It would do it no
good to erase a symbol, since i can only read a symbol at most once!

The name “‘tag” comes from the children’s game—Post was interested in
the decidability of the question: Does the reading head, which is advancing
at the constant rate of P squares per unit time, ever catch up with the write
head, which is advancing irregularly. (We do not require the his to have the
same lengths.) Note, in the (00, 1101) problem, that the read head advances
three units at each step, while the write head advances by two or four units.
Statistically, one can see, the latter has the same average speed as the former.
Therefore, one would expect the string to vanish, or become periodic. One
would suppose this for most initial strings, because if the chances are equal
of getting longer or shorter, then it is almost certain to get short, from time
to time. Each time the string gets short, there is a significant chance of
repeating a previously written string, and repeating once means repeating
forever, in a monogenic process. Is there an initial string that grows forever,
in spite of this statistical obstacle? No one knows. All the strings I have
studied (by computer) either became periodic or vanished, but some only
after many millions of iterations!

THEOREM 14.6-1 (Cocke [1964])

For any Turing machine T there exists a tag system T'r that behaves
like T, in the (m, n) sense of 11.2, when given an axiom that encodes T'’s tape
as Aa aa aa...aa Bb bb bbH. bb with m aa’s and n bb’s. The tag
system T has deletion number P — 2

COROLLARY 14.6-1

Computability with monogenic normal systems is equivalent to comput-

ability with general-recursive Sunctions, Turing machines, general canonical
systems, elc.

Proof: We will construct Scparate tag systems for each of the states
of the machine 7. Then we wil] link these together (by identifying certain
letters of the different alphabets) to form a single tag system that behaves
like the whole machine 7. We will begin by constructing a tag system that
behaves like the right-hand side of Fig. 11.2-1.

We have been accustomed to thinking of a Turing machine as operat-
ing according to the scheme of Fig. 14.6-2. 1t is equivalent, more con-
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Qio W
Write Move| |Gotoll | o) v os
/, S, Din 0. ¥ Read
O 0 i0 0 TCIDe
.| Read 1 Write leo o e ——
1 tape —
I |Write| |Move| |Goto 0 R
Si [ D Qi >| Read
tape .
0/ 1 WIite e o o -——“\
0/'1
Fig. 14.6-2

venient here, and actually fundamentally simpler to think of the Turing
machine as made up of states according to the scheme of Fig. 14.6-3.
Looked at this way, a Turing machine will have twice as many states, but
in some sense these were concealed in it already, for it must have had a

secret pair of states to remember what it had read while it was writing
something else.

PROBLEM. Obviously states in the new system do not correspond exactly
to states in the old system. The new states are also quintuples, but of the

form:
(State Write Move Read: ifOgoto if 1 go to)
Qi S D; Qio Qi
and there is only one quintuple for each state, rather than two. Use this
formulation of Turing machines to simplify the development of section 11.3.

Now to realize such a state by a tag system, we will exhibit a set of pro-
ductions that will have the effect of a move-right state. In such a case, we
will want to change m and n so that

m-—2m + §;

n/2 if n 1s even,
n— H(n) = o
(n — 1)/2 ifnisodd.
S Go to Qg - Write | Ve l
; 51'0 ——
»| Write|  IMovel  |Read |
S; D; tape \
O/' \»4 GO ?0 OH l : \Asllt”e 068 S
e

Fig. 14.6-3
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and we must prepare the system so that it will next go to state Q if n is
even, and to Q; if n is odd.
Let us begin with the string

Aa(aa)" Bb(bb)"

where @ " means to repeat the string @ n times. Our first productions will

be

A — Cc A — Ccce

’ ’ or

a — ccce a — cccc
depending on whether S, is supposed to be 0 or 1. (This depends only on
what state we are in.) For brevity, we will abbreviate tag productions by
showing only the antecedent first letter and the consequent string, since
writing the a;x $ — $4; form is so redundant. In every case P, the
number of letters deleted, is 2. Applying the productions above leads to
Bb(bb)"Cc(cc)™ where m' is either 2m or 2m + 1 depending on whether
or not the state required the machine to write 1 or 0 on the square it is

leaving. The key problem is now to determine whether # is even or odd.
The procedure for doing this is initiated by the productions

B— S ) Bx$ — $S
€.,
b — 35 : bx$ — $s

which result in the string
Ce(cc)™Ss"

and

C — DD,
c — dld()

which lead to
Ss"D lDo(dldo)ml

Now the oddness or evenness of n is, at last, to have an effect; for

S — T|T0

s > Ll

yields either
D\ Do(ddo)™ T\ To(t o) " or Do(ddo)™ Ty To(t 16)™?

depending on whether n was odd or even, respectively. This has a pro-
found effect, because in the first case the system will see only subscript ‘I’
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symbols from now on, while in the other case it will see only subscript ‘0’
symbols! Hence, we can control what happens now with two distinct sets
of productions:

n odd—j neven
D|~>A|a| Do'—>a0A0a0
dl—*alal do*’ao(lo

which yields
T, To(llto)"lA a(a lal)"" or To(flfo)"’aoA oao(aoao)m'

where we have written n’ for (n — 1)/2 or n/2 as the case may be. Finally,
n odd neven

Ty — Bobo

to — bobo

T, — B\b,
Avai(@ya)™Bbi(byb) =" or  Agaelaoa)™ Bobo(bobo) "

I —’blbl

produce the desired final strings

The important thing about these two possible final results is that they
are in entirely separate alphabets. This means that we can now write dif-
ferent productions to determine what will next become of the string in the
case that n was even and in the case that n was odd. Thus we are, in effect,
able to lay out the structure of a program. What should we do, in fact?
We write a set of productions like the ones above for each state Q; of the
Turing machine, using entirely different alphabets for each. Then we link
them; whenever an exit state Q;, is the state Q;, we make the output letters
A,,a,, B, and b, of Q; the same as the input letters 4, a, B, and b of Q;.
Similarly we identify the output letters Ao, ao, Bo and by of Q;, with
the input letters of whatever state is Q. Thus, we can simulate the inter-
connections of states of an arbitrary Turing machine by combining in one
large tag system, all tag productions described above. This completes the
proof of theorem 14.6-1.

14.7 UNSOLVABILITY OF POST'S
“CORRESPONDENCE PROBLEM"”

In 1947 Post showed that there is no effective procedure to answer
questions of the following kind:
THE CORRESPONDENCE PROBLEM

Given an alphabet 4 and a finite set of pairs of words (g;, h;) in the
alphabet A4, is there a sequence iiy...in of selections such that the
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strings

8:&iy---&:, and hihi, .. iy
formed by concatenating-—writing down in order—corresponding g's and
i’s are identical?

While Post’s original proof of the unsolvability of such problems is
complicated, the result of 14.6—that monogenic normal systems can be
universal—makes it very simple to prove; for we can show that any
procedure that could effectively answer all correspondence questions
could equally well be used to tell whether any tag, or other monogenic
normal system will ever reach a halting symbol, and this is equivalent to
telling whether any Turing machine computation will halt.

Proof: Let M be a monogenic normal system with axiom A and
productions g;$ — $4,. Now suppose that this system happens to termi-
nate by eventually producing a string Z which does not begin with any of
the g/’s. Define G;and H,; as follows:

ifg, = a,a,...a, let G,be Xa,Xa,X ... Xa,
hy = aua,...a. let Hibe[a, Xa,X . a.X|

Now consider the correspondence system:

and

Go G, ZXy
} ! !
XAH, H, Y

where X’s are placed after each letter of 4 and before each letter of Z to
form 4 and Z. Y is a new letter.

ASSERTION

This system will have a matching pair of identical strings if and only if
the monogenic normal system (g;$ — $h,), when started with A, terminates
with the string 7. In fact, if there is any solution to the correspondence
question, there is just one, and that solution is (for the G’s) the sequence
of antecedents and (for the H’s) the sequence of consequents encountered
in producing Z from 4.

If we can establish the truth of the assertion, then the unsolvability of
the general correspondence follows, for one can adapt any Turing-
machine halting problem to a question of whether the machine in question
reaches a certain special state with a blank tape;: then, in the normal
system, we can reduce this to the question of terminating in a particular
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string Z. (Or, we can simply equate this to the unsolvable halting prob-
lem for tag systems.)

Why is the assertion true? Let us first note what the X’s and Y’s are
for. The X’s are to make sure that if a matching pair exists at all, it must
begin with the transcription XA of the axiom A. This is assured by the fact
that the only way an H string can start with an X is by starting with XAH,.
And since all G strings must start with an X, we can be sure that any match-
ing set starts with XA. Similarly, any matching pair of strings must end
with a transcription of Z—more precisely, must end with ZXY— because
a G string can’t end in X and an H string can end only with X or Y. It
follows that if there is any solution at all to this correspondence problem,
then the solution must be a string which can be resolved into the two
forms:

GoGiy, Giy... GiyZXY
XAHoH; Hiy...H; )Y

But if this is the case, then it follows that the sequence of Gij’s is exactly
the sequence that would be followed by the original monogenic normal
system (g;, h;)! We can see this inductively: we have already established
that the H string must begin with X4. Then the G string must begin
with Go. Why? Because the system is monogenic! That means that the
beginning of axiom 4 can be matched only by go. Then go determines
hy—the string to be added to A-—and let us remove G, from the front.
Then there is only one G that can match the beginning of the remaining
string; this corresponds to the g;, that the normal system would apply at
the next step. Then G;, determines H; —the string that is to be added to
what is left after deleting G;, from the front. Again, G, is determined,
because the system is monogenic and it, too, must be precisely the pro-
duction antecedent the normal system would use at its second stage.

Thus the sequence of G;'s must be the same as that of the g/s under-
lying the monogenic normal system (and hence must represent the steps
on the computation of the still-further underlying Turing-machine compu-
tation). If the process terminates, then the last G that was used will be
followed in the string by Z—by definition that which will remain after no
more productions can be applied.

Therefore, if the strings match, then they must both be the sequence
mentioned in the assertion.

So far, the only monogenic normal systems we have are the tag sys-
tems. We could, however, have used theorem 14.1-1 more directly to
show that monogenic normal systems are universal: Consider an arbitrary
two-register machine, and represent its state by a word of the form

[, 1.1 Kyt
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Then, using the same methods as we used in 12.6, we can realize the in-
struction types of theorem 14.1-1 as follows.
Conditional subtract from first register:

[,K;$ — $1,K; (1e., go to ;. if register is empty)

1$ — $i or
;18 — $1,,, (subtract | and goto ;)
Kj$ - $Kj+|

Conditional subtract from second register:

;Y — $1f (rotate to examine second register)

KilF$ — $K*1,  (gotol; if register is empty)

Ki$ — $K;.
K;1$ — $K,,, (subtract I and go to /,,,)
I7$ — $17,,,
Add to first:
I$ 80,1, K;$—$K;.,

Add to second:
1j$ - $Ij+1, Kj$ g $Kj+ll

PROBLEM. Can you make a similar construction for three or more
registers?

14.8 “SMALL" UNIVERSAL TURING MACHINES

The existence of universal machines is surprising enough, and it is
startling to find that such machines can be quite simple in structure. One
may ask just how small they can be; but to answer this, one needs to have
some measure of size, or complexity, of a machine. Several measures can
be defended; Shannon [1956] suggests that one might consider the product
of the number of symbols and the number of states, since, as he shows,
this product has a certain invariance. One can exchange states and sym-
bols without greatly changing this product. To count the number of
quintuples would be almost the same.

In this section we describe the universal Turing machine with the
smallest known state-symbol product. This machine is the most recent
entry in a sort of competition beginning with ITkeno [1958] who exhibited
a six-symbol, ten-state **(6, 10)”” machine, Watanabe [1960] (6, 8), Minsky
[1960] (6, 7), Watanable [1961] (5, 8), Minsky [1961] (6, 6), and finally the
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(4, 7) machine of this section (described in Minsky [1962]). The reader is
welcome to enter the competition (I believe that a certain one of the (3, 6)
machines might be universal, but can’t prove it)—although the reader
should understand clearly that the question is an intensely tricky puzzle
and has essentially no serious mathematical interest. To see how tricky
things can become, the reader can refer to my 1962 paper describing the
(6, 6) machine; it is much more complicated than the machine of this
section.

14.8.1 The four-symbol seven-state
universal machine

The very notion of a universal Turing machine entails the notion of
description; the machine to be simulated has to be described, on the tape
of the universal machine, in the form of some code. So, also, must the
initial tape or data for the simulated machine be described. One way to
do this encoding is to write, almost literally, the quintuples for the simu-
lated machine on the tape of the universal machine; this is what we did for
the machine of chapter 7. On the other hand, there is no particular virtue
in the quintuple formulation, and one might be able to get a simpler uni-
versal machine with some other representation. Nevertheless, we must
not go too far, for if one is permitted an arbitrary partial-recursive
computation to do the encoding and is permitted to let the code depend
on the initial data, then one could use as the code the result of the Turing-
machine computation itself, and this would surely be considered a cheat!
(It would give us a (2, 0) machine, since the answer could be written in
unary on a tape, and no computer would be necessary.) We have to make
some rule, e.g., that nothing like full computation power may be spent on
the encoding. Informally, this will be guaranteed if the encodings for the
machine structure and for the data are done separately. Then we can be
sure that the machine was not applied to the data during the encoding
process. This condition, we claim, justifies what we do below. More
technically, one might require, for example, that the encoding process be a
primitive-recursive, symbol-manipulation operation on the input; this,
too, would guarantee that if the resulting machine is universal, this is not
due to some power concealed in the encoding process. Davis [1956] dis-
cusses this question. We will present first the encoding for our machine
and then its state-symbol transition table.

The four-symbol, seven-state machine will work by simulating an
arbitrary P = 2 tag system. We know, by theorem 14.6-1, that if a
machine can do this, it must be universal. We know, by the proof of
theorem 14.6-1, that representing the quintuples of an arbitrary Turing
machine in the form of a P = 2 tag system is a tedious but trivial pro-
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cedure. Since one can see in advance for any such representation how
much work will be involved, the conversion is a primitive-recursive oper-
ation. In fact, it involves only writing down sixteen productions for each
quintuple.

Suppose, then, that the tag system 18:

Alphabet: ay,a3,...,8m
Productions: ay — @11@12---a1n,
a, > dndn...Awm, =

Adm a,,,la,,,;_...am,,m

where n; is the number of letters in the consequent of a;. For each letter
a; we will need a number N, computed as follows:

N1=‘—1
Nigr = Ni+ n;

sothat N, = 1 + ny + ny + -+ Aioe Note that this is just one more
than the number of letters in the production consequents preceding that
of a;,. We shall see the reason for this definition shortly.

We will represent any string (e.g., an axiom) a,a,...a, on U’s tape by
a string of the form

S = yVraytia. Ayt
so that N,, used as the length of a string of y’s, is used to represent a; to
the machine. The A’s are spacers.
The productions will be represented as follows. Define
Nin; . .

P, =110 "oy ...010"2010™"
so that the representation of the consequent of a; begins with 11 and then
has representations of the consequent’s letters—in reverse order—-
separated by 01's. (We use strings of 0’s here instead of strings of y’s.)
Now, finally, we can describe the whole of U’s tape; it 1s:

Eioooooo En /—;”n_.‘\otn

The secret of the encoding is this: The pairs 1 ] and O1 are used as punctua-
tion marks; 11 marks the beginning of a production and 0l marks
spaces between letters in a production consequent. There are exactly n;
punctuation marks in the ith production P, and there is one extra 11 just
to the left of S. Hence, there are exactly N; punctuation marks between S
and the beginning of P;. So the code y"i chosen to represent 4; contains

PlAtls OOOo--J
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exactly the information needed to locate the production corresponding to
that letter!

The machine will use only the letters already introduced: 0, 1, y, and 4.
It is understood that ‘0’ is also the blank symbol on the remainder of the
infinite tape. Table 14.8-1 is the state-symbol table for the machine; it is
understood that if no new state 1s given, the machine remains in its present
state.

Table 14.8-1
q1 q2 q3 d4 qs q6 q7
y 0L 0L/l y L vy L ¥y R y R OR
0 0L y R HALT y R/S y L/3 A LJ3 » R/6
i 1 L)2 A R AL 1 L7 A R A R 1 R
A 1 L » R/6 1 L/4 I L 1 R 1 R 0 R/2

The machine starts in q, at the first symbol in S. It seems useless to try
to explain the machine, except by following it through an example, be-
cause its various functions are all mixed up. Generally, states g, and ¢,
read the first symbol in S, locate and mark the corresponding production
P;, and erase the first symbol in S. States g3, ¢4, ¢s, and g, then
copy the production consequent at the end of S. (The copying works from
inside to out; this is why the productions were written backwards.) When
the end of the production is detected (by ¢4 and ¢, finding the 11), then
g+ restores the tape, removing the marking of the production region and,
incidentally, erasing another symbol from S. Since two symbols were
erased from S, and the appropriate production is copied, we have a
P=2 tag process.

The problem in making a “small” machine is to avoid use of new
letters for marking. All marking of working places for this machine is
done by interchanging 0’s and y’s and 1’s and A4’s.

If g; meets a 0, the machine halts. It turns out that this can happen
only under special conditions; but these conditions will come about,
eventually, if the special string Py = 110101 is used as a production and
this production is referenced. So if any of the letters of the tag system are
supposed to cause a halt, we assign to them the production Py. The
number ny assigned to the halt symbal Py is 3.

Constructing and following an example is tedious. Here is a simple
one.

3

AN EXAMPLE

We will code the machine for the simple tag system
ay;— da
aj 7 ayds
ay — halt



280 VERY SIMPLE BASES FOR COMPUTABILITY SEC. 14.8.1

For this system,
ny = 1 A“ =1 Pl =110
n, =2 Ny =2 P, = 11 0000 01 00
Ny =4 P; = 11 01 01 (the halt production)

If we start with axiom a,a,a,, this is encoded as yyAyyAyy and the
tape is:

¥11010111000OO10011011yyllyyll vy
(%)

The machine marks symbols to the left, finding two punctuation groups,

and then goes to the right in state g4, writing an 4 at the end. The tape
is then

1101 0111 0000 O1 00 |44ylA4 vy v vy 1 yy A

(%)

Note that two deletions have been made from the front of the tag string!
Now the production is copied (backwards) at the end; two 0’s, and 4 and
four more 0’s, forming yy 1 yyyy:

MO0 yyyy yAyy |AAylAAl yy vy yy 1 yy 1 yy 1 yyyyi

(@)

On the next trip to the left, the machine encounters the 11, meaning that
copying is to stop; the machine enters g; and restores the tape to the form

11 01 01{11 0000 01 00|11 O|11| 00 O 00 O |yy 4lyy Ayyyy

A

This is, in effect, like the starting state (g, has the same effect as ¢q)
except that the string a,a,a, has been replaced, as it should be, by
aa,as.

If you trace the operation through to the end, you will see how the
string next becomes a;a,a;. Following that, after some curious struggles,
the symbol a3 will cause the machine to halt; it first writes 44 and this
sequence eventually causes state g3 to encounter a zero.
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14.8.2 Structure of universal machines

One might suppose, or hope, that the property that a Turing machine
is universal should imply some interesting conclusion about its state dia-
gram. But it seems there is nothing much to say about this, in general,
because there are universal machines with structures so trivial that one
can draw no interesting conclusions. Suppose, for example, we make a
straightforward machine for a P=2 tag system. Let the axiom S be
written out on the tape

gooo...s...ooog

and start the machine at the beginning of S with the state diagram shown
in Fig. 14.8-1. Now we can make such a tag machine for any Turing ma-
chine, by section 14.6; so we can also do it for some universal Turing
machine; hence there is a machine with this structure that is universal.

Fig. 14.8-1

There simply doesn’t seem to be any structure required that is any
more complicated than one needs to make a multiplication machine. Per-
haps this is not surprising in view of theorems like theorem 14.2-1 and the
difficulty of excluding full recursion, e.g., minimization, in any machine
that has any iterative (loop) ability. In any case, the demonstration by
Shannon (1956) that, allowed enough symbols, one can replace any Turing
machine by a two-state machine shows that the structure of the state
diagram can be hidden in the details of operation and not clearly repre-
sented in the topology of the interstate connections.

PROBLEM. Choose any two-symbol, two-state machine and show that it is
not universal. Hint: Show that its halting problem is decidable by describ-
ing a procedure that decides whether or not it will stop on any given tape.
D. G. Bobrow and the author did this for all (2, 2) machines [1961, un-
published] by a tedious reduction to thirty-odd cases (unpublishable).



