Skip to main content
Log in

Millisecond-order rapid micromixing with non-equilibrium electrokinetic phenomena

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

We report an active micromixer utilizing vortex generation due to non-equilibrium electrokinetics near micro/nanochannel interfaces. Its design is relatively simple, consisting of a U-shaped microchannel and a set of nanochannels. We fabricated the micromixer just using a two-step reactive ion etching process. We observed strong vortex generation in fluorescent microscopy experiments. The mixing performance was evident in a combined pressure-driven and electroosmotic flows, compared with the case with a pure pressure-driven flow. We characterized the micromixer for several conditions: different applied voltages, ion concentrations, flow rates, and nanochannel widths. The experimental results show that the mixing performance is better with a higher applied voltage, a lower ion concentration, and a wider nanochannel width. We quantified the mixing characteristics in terms of mixing time. The lowest mixing time was 2 milliseconds with the voltage of 230 V and potassium chloride solutions of 0.1 mM. We expect that the micromixer is beneficial in several applications requiring rapid mixing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahmed D, Mao X, Shi J, Juluri BK, Huang TJ (2009) A millisecond micromixer via single-bubble-based acoustic streaming. Lab Chip 9:2738–2741

    Article  Google Scholar 

  • Chen C, Cho C (2008) A combined active/passive scheme for enhancing the mixing efficiency of microfluidic devices. Chem Eng Sci 63:3081–3087

    Article  Google Scholar 

  • Chen J, Yang R (2007) Electroosmotic flow mixing in zigzag microchannels. Electrophoresis 28:975–983

    Article  Google Scholar 

  • Choi YS, Kim SJ (2009) Electrokinetic flow-induced currents in silica nanofluidic channels. J Colloid Interface Sci 333:672–678

    Article  Google Scholar 

  • Di Carlo D (2009) Inertial microfluidics. Lab Chip 9:3038–3046

    Article  Google Scholar 

  • Dukhin SS (1993) Nonequilibrium electric surface phenomena. Adv Colloid Interface Sci 44:1–134

    Article  Google Scholar 

  • Egawa T, Durand JL, Hayden EY, Rousseau DL, Yeh S (2009) Design and evaluation of a passive alcove-based microfluidic mixer. Anal Chem 81:1622–1627

    Article  Google Scholar 

  • El Moctar AO, Aubry N, Batton J (2003) Electro-hydrodynamic micro-fluidic mixer. Lab Chip 3:273–280

    Article  Google Scholar 

  • Erbacher C, Bessoth FG, Busch M, Verpoorte E, Manz A (1999) Towards integrated continuous-flow chemical reactors. Mikrochim Acta 131:19–24

    Article  Google Scholar 

  • Frommelt T, Kostur M, Wenzel-Schaefer M, Talkner P, Haenggi P, Wixforth A (2008) Microfluidic mixing via acoustically driven chaotic advection. Phys Rev Lett 100:034502

    Article  Google Scholar 

  • Gadish N, Voldman J (2006) High-throughput positive-dielectrophoretic bioparticle microconcentrator. Anal Chem 78:7870–7876

    Article  Google Scholar 

  • Gambin Y, Simonnet C, VanDelinder V, Deniz A, Groisman A (2010) Ultrafast microfluidic mixer with three-dimensional flow focusing for studies of biochemical kinetics. Lab Chip 10:598–609

    Article  Google Scholar 

  • Goet G, Baier T, Hardt S (2009) Micro contactor based on isotachophoretic sample transport. Lab Chip 9:3586–3593

    Article  Google Scholar 

  • Haeberle S, Zengerle R (2007) Microfluidic platforms for lab-on-a-chip applications. Lab Chip 7:1094–1110

    Article  Google Scholar 

  • Hardt S, Drese KS, Hessel V, Schonfeld F (2005) Passive micromixers for applications in the microreactor and mu TAS fields. Microfluid Nanofluid 1:108–118

    Article  Google Scholar 

  • Hardt S, Drese KS, Hessel V, Schonfeld F (2006) Theoretical and experimental characterization of a low-Reynolds number split-and-recombine mixer. Microfluid Nanofluid 2:237–248

    Article  Google Scholar 

  • Hessel V, Lowe H, Schonfeld F (2005) Micromixers—a review on passive and active mixing principles. Chem Eng Sci 60:2479–2501

    Article  Google Scholar 

  • Hirschberg S, Koubek R, Moser F, Schoeck J (2009) An improvement of the Sulzer SMX (TM) static mixer significantly reducing the pressure drop. Chem Eng Res Des 87:524–532

    Article  Google Scholar 

  • Hsiung S, Lee C, Lin J, Lee G (2007) Active micro-mixers utilizing moving wall structures activated pneumatically by buried side chambers. J Micromech Microeng 17:129–138

    Article  Google Scholar 

  • Kim SJ, Wang Y, Lee JH, Jang H, Han J (2007) Concentration polarization and nonlinear electrokinetic flow near a nanofluidic channel. Phys Rev Lett 99:044501

    Article  Google Scholar 

  • Kim D, Raj A, Zhu L, Masel RI, Shannon MA (2008) Non-equilibrium electrokinetic micro/nanofluidic mixer. Lab Chip 8:625–628

    Article  Google Scholar 

  • Kim SJ, Li LD, Han J (2009) Amplified electrokinetic response by concentration polarization near nanofluidic channel. Langmuir 25:7759–7765

    Article  Google Scholar 

  • Kim SJ, Song YA, Han J (2010) Nanofluidic concentration devices for biomolecules utilizing ion concentration polarization: theory, fabrication, and applications. Chem Soc Rev 39:912–922

    Article  Google Scholar 

  • Lee H, Voldman J (2007) Optimizing micromixer design for enhancing dielectrophoretic microconcentrator performance. Anal Chem 79:1833–1839

    Article  Google Scholar 

  • Lee CY, Lee GB, Fu LM, Lee KH, Yang RJ (2004) Electrokinetically driven active micro-mixers utilizing zeta potential variation induced by field effect. J Micromech Microeng 14:1390–1398

    Article  Google Scholar 

  • Liau A, Karnik R, Majumdar A, Cate JHD (2005) Mixing crowded biological solutions in milliseconds. Anal Chem 77:7618–7625

    Article  Google Scholar 

  • Lund-Olesen T, Buus BB, Howalt JG, Hansen MF (2008) Magnetic bead micromixer: influence of magnetic element geometry and field amplitude. J Appl Phys 103:07E902

    Article  Google Scholar 

  • Mani A, Zangle TA, Santiago JG (2009) On the propagation of concentration polarization from microchannel-nanochannel interfaces. Part I: Analytical model and characteristic analysis. Langmuir 25:3898–3908

    Article  Google Scholar 

  • Mansur EA, Mingxing Y, Yundong W, Youyuan D (2008) A state-of-the-art review of mixing in microfluidic mixers. Chin J Chem Eng 16:503–516

    Article  Google Scholar 

  • Mao P, Han JY (2005) Fabrication and characterization of 20 nm planar nanofluidic channels by glass–glass and glass–silicon bonding. Lab Chip 5:837–844

    Article  Google Scholar 

  • Mao X, Juluri BK, Lapsley MI, Stratton ZS, Huang TJ (2010) Milliseconds microfluidic chaotic bubble mixer. Microfluid Nanofluid 8:139–144

    Article  Google Scholar 

  • Miller EM, Wheeler AR (2008) A digital microfluidic approach to homogenenous enzyme assays. Anal Chem 80:1614–1619

    Article  Google Scholar 

  • Min J, Kim JH, Kim S (2004) Microfluidic device for bio analytical systems. Biotech Bioprocess Eng 9:100–106

    Article  Google Scholar 

  • Neils C, Tyree Z, Finlayson B, Folch A (2004) Combinatorial mixing of microfluidic streams. Lab Chip 4:342–350

    Article  Google Scholar 

  • Nguyen NT, Wu ZG (2005) Micromixers—a review. J Micromech Microeng 15:R1–R16

    Article  Google Scholar 

  • Niu XZ, Liu LY, Wen WJ, Sheng P (2006) Active microfluidic mixer chip. Appl Phys Lett 88:153508

    Article  Google Scholar 

  • Oddy MH, Santiago JG, Mikkelsen JC (2001) Electrokinetic instability micromixing. Anal Chem 73:5822–5832

    Article  Google Scholar 

  • Park SY, Russo CJ, Branton D, Stone HA (2006) Electrokinetic instability micromixing. J Colloid Interface Sci 297:832–839

    Article  Google Scholar 

  • Park S, Lee S, Moon JH, Yang S (2009) Holographic fabrication of three-dimensional nanostructures for microfluidic passive mixing. Lab Chip 9:3144–3150

    Article  Google Scholar 

  • Plecis A, Nanteuil C, Haghiri-Gosnet A, Chen Y (2008) Electropreconcentration with charge-selective nanochannels. Anal Chem 80:9542–9550

    Article  Google Scholar 

  • Pu QS, Yun JS, Temkin H, Liu SR (2004) Ion-enrichment and ion-depletion effect of nanochannel structures. Nano Lett 4:1099–1103

    Article  Google Scholar 

  • Puleo CM, Wang T (2009) Microfluidic means of achieving attomolar detection limits with molecular beacon probes. Lab Chip 9:1065–1072

    Article  Google Scholar 

  • Ridgeway WK, Seitaridou E, Phillips R, Williamson JR (2009) RNA-protein binding kinetics in an automated microfluidic reactor. Nucleic Acids Res 37:e142

    Article  Google Scholar 

  • Roder H, Maki K, Cheng H, Shastry MCR (2004) Rapid mixing methods for exploring the kinetics of protein folding. Methods 34:15–27

    Article  Google Scholar 

  • Rubinshtein I, Zaltzman B, Pretz J, Linder C (2002) Experimental verification of the electroosmotic mechanism of overlimiting conductance through a cation exchange electrodialysis membrane. Russ J Electrochem 38:853–863

    Article  Google Scholar 

  • Rubinstein SM, Manukyan G, Staicu A, Rubinstein I, Zaltzman B, Lammertink RGH, Mugele F, Wessling M (2008) Direct observation of a nonequilibrium electro-osmotic instability. Phys Rev Lett 101:236101

    Article  Google Scholar 

  • Sasaki N, Kitamori T, Kim HB (2006) AC electroosmotic micromixer for chemical processing in a microchannel. Lab Chip 6:550–554

    Article  Google Scholar 

  • Sasaki N, Kitamori T, Kim H (2010) Experimental and theoretical characterization of an AC electroosmotic micromixer. Anal Sci 26:815–819

    Article  Google Scholar 

  • Schulte TH, Bardell RL, Weigl BH (2002) Microfluidic technologies in clinical diagnostics. Clinica Chimica Act 321:1–10

    Article  Google Scholar 

  • Shcherbakova I, Brenowitz M (2008) Monitoring structural changes in nucleic acids with single residue spatial and millisecond time resolution by quantitative hydroxyl radical footprinting. Nat Protoc 3:288–302

    Article  Google Scholar 

  • Song H, Ismagilov RF (2003) Millisecond kinetics on a microfluidic chip using nanoliters of reagents. J Am Chem Soc 125:14613–14619

    Article  Google Scholar 

  • Stroock AD, Dertinger SKW, Ajdari A, Mezic I, Stone HA, Whitesides GM (2002) Chaotic mixer for microchannels. Science 295:647–651

    Article  Google Scholar 

  • Tofteberg T, Skolimowski M, Andreassen E, Geschke O (2010) A novel passive micromixer: lamination in a planar channel system. Microfluid Nanofluid 8:209–215

    Article  Google Scholar 

  • Villermaux E, Stroock AD, Stone HA (2008) Bridging kinematics and concentration content in a chaotic micromixer. Physical Review E 77:015301

    Article  Google Scholar 

  • Wang Y, Zhe J, Dutta P, Chung BT (2007) A microfluidic mixer utilizing electrokinetic relay switching and asymmetric flow geometries. J Fluids Eng Trans ASME 129:395–403

    Article  Google Scholar 

  • Wu Z, Li D (2008) Mixing and flow regulating by induced-charge electrokinetic flow in a microchannel with a pair of conducting triangle hurdles. Microfluid Nanofluid 5:65–76

    Article  Google Scholar 

  • Yan D, Yang C, Miao J, Lam Y, Huang X (2009) Enhancement of electrokinetically driven microfluidic T-mixer using frequency modulated electric field and channel geometry effects. Electrophoresis 30:3144–3152

    Article  Google Scholar 

  • Yaralioglu GG, Wygant IO, Marentis TC, Khuri-Yakub BT (2004) Ultrasonic mixing in microfluidic channels using integrated transducers. Anal Chem 76:3694–3698

    Article  Google Scholar 

  • Yi CQ, Li CW, Ji SL, Yang MS (2006) Microfluidics technology for manipulation and analysis of biological cells. Anal Chim Acta 560:1–23

    Article  Google Scholar 

  • Yossifon G, Chang H (2008) Selection of nonequilibrium overlimiting currents: universal depletion layer formation dynamics and vortex instability. Phys Rev Lett 101:254501

    Article  Google Scholar 

  • Zaltzman B, Rubinstein I (2007) Electro-osmotic slip and electroconvective instability. J Fluid Mech 579:173–226

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

This work was supported by the Basic Science Research Program (Grant No. 2011-0009993) through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daejoong Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, S.J., Kim, D. Millisecond-order rapid micromixing with non-equilibrium electrokinetic phenomena. Microfluid Nanofluid 12, 897–906 (2012). https://doi.org/10.1007/s10404-011-0918-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-011-0918-y

Keywords

Navigation