Skip to main content
Log in

The First Computational Theory of Mind and Brain: A Close Look at Mcculloch and Pitts's “Logical Calculus of Ideas Immanent in Nervous Activity”

  • Editorial Commentary
  • Published:
Synthese Aims and scope Submit manuscript

Abstract

Despite its significance in neuroscience and computation, McCulloch and Pitts's celebrated 1943 paper has received little historical and philosophical attention. In 1943 there already existed a lively community of biophysicists doing mathematical work on neural networks. What was novel in McCulloch and Pitts's paper was their use of logic and computation to understand neural, and thus mental, activity. McCulloch and Pitts's contributions included (i) a formalism whose refinement and generalization led to the notion of finite automata (an important formalism in computability theory), (ii) a technique that inspired the notion of logic design (a fundamental part of modern computer design), (iii) the first use of computation to address the mind–body problem, and (iv) the first modern computational theory of mind and brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

REFERENCES

  • Abraham, T. H.: 2002, ‘(Physio)logical Circuits: The Intellectual Origins of the McCulloch-Pitts Neural Networks’, Journal of the History of the Behavioral Sciences 38(1), 3–25.

    Google Scholar 

  • Abraham, T. H.: 2003, ‘Integrating Mind and Brain: Warren S. McCulloch, Cerebral Localization, and Experimental Epistemology’, Endeavour 27(1), 32–38.

    Google Scholar 

  • Abraham, T. H.: forthcoming, ‘Nicolas Rashevsky's Mathematical Biophysics’, Journal of the History of Biology.

  • Aizawa, K.: 1996, ‘Some Neural Network Theorizing Before McCulloch: Nicolas Rashevsky's Mathematical Biophysics’, in R. Moreno Díaz and J. Mira (eds.), Brain Processes, Theories, and Models: An International Conference in Honor of W. S. McCulloch 25 Years after His Death, MIT Press, Cambridge, MA, pp. 64–70.

    Google Scholar 

  • Arbib, M. A.: 1989, 'Comments on “A Logical Calculus of the Ideas Immanent in Nervous Activity”, in R. McCulloch (ed.), COLLECTED WORKS OF WARREN S. MCCULLOCH, Intersystems, Salinas, CA, pp. 341–342.

    Google Scholar 

  • Arbib, M. A.: 2000, ‘Warren McCulloch's Search for the Logic of the Nervous System’, Perspectives in Biology and Medicine 43(2), 193–216.

    Google Scholar 

  • Aspray, W.: 1985, ‘The Scientific Conceptualization of Information: A Survey’, Annals of the History of Computing 7(2), 117–140.

    Google Scholar 

  • Boden, M.: 1991, ‘Horses of a Different Color?’ in W. Ramsey, S. P. Stich and D. E. Rumelhart (eds.), Philosophy and Connectionist Theory, LEA, Hillsdale, pp. 3–19.

    Google Scholar 

  • Breidbach, O.: 2001, ‘The Origin and Development of the Neurosciences’, in P. Machamer, R. Grush and P. McLaughlin (eds.), Theory and Method in the Neurosciences, University of Pittsburgh Press, Pittsburgh, PA, pp. 7–29.

    Google Scholar 

  • Chalmers, D. J.: 1996, The Conscious Mind: In Search of a Fundamental Theory. Oxford University Press, Oxford.

    Google Scholar 

  • Churchland, P. S. and T. J. Sejnowski: 1992. The Computational Brain. MIT Press, Cambridge, MA.

  • Cleland, C. E.: 1993, ‘Is the Church-Turing Thesis True?’ Minds and Machines 3, 283–312.

    Google Scholar 

  • Copeland, B. J.: 2000, ‘Narrow Versus Wide Mechanism: Including a Re-Examination of Turing's Views on the Mind-Machine Issue’, The Journal of Philosophy XCVI(1), 5–32.

    Google Scholar 

  • Copeland, B. J.: 2002, ‘The Church-Turing Thesis’, in E. N. Zalta (ed.), The Stanford Encyclopedia of Philosophy (Fall 2002 Edition), URL = <http://plato. stanford.edu/archives/fall2002/entries/church-turing/>.

  • Cowan, J. D.: 1990a, ‘McCulloch-Pitts and Related Neural Nets from 1943 to 1989’, Bulletin of Mathematical Biology 52(1/2), 73–97.

    Google Scholar 

  • Cowan, J. D.: 1990b, ‘Neural Networks: The Early Days’, in D. S. Touretzky (ed.) Advances in Neural Information Processing Systems 2, Morgan Kaufmann, San Mateo, CA, pp. 829–842.

    Google Scholar 

  • Cowan, J. D.: 1990c, ‘Von Neumann and Neural Networks’, in J. Glimm, J. Impagliazzo and I. Singer (eds.), The Legacy of John von Neumann, American Mathematical Society, Providence, pp. 243–274.

    Google Scholar 

  • Craik, K. J. W.: 1943, The Nature of Explanation. Cambridge University Press, Cambridge.

    Google Scholar 

  • Craver, C.: 2003, ‘The Making of a Memory Mechanism’, Journal of the History of Biology 36, 153–195.

    Google Scholar 

  • Dayan, P. and L. F. Abbott: 2001, Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems, MIT Press, Cambridge, MA.

    Google Scholar 

  • Fitch, F.: 1944, ‘Review of McCulloch and Pitts 1943’, Journal of Symbolic Logic 9(2), 49–50.

    Google Scholar 

  • Fodor, J. A.: 1981, Representations, MIT Press, Cambridge, MA.

    Google Scholar 

  • Fodor, J. A.: 1998, Concepts, Clarendon Press, Oxford.

    Google Scholar 

  • Frank, R: 1994, ‘Instruments, Nerve Action, and the All-or-None Principle’, Osiris 9, 208–235.

    Google Scholar 

  • Heims, S. J.: 1991, ‘Constructing a Social Science for Postwar America: The Cybernetics Group, 1946-1953, MIT Press, Cambridge, MA.

    Google Scholar 

  • Haugeland, J.: 1981, ‘Analog and Analog’, Philosophical Topics 12, 213–225.

    Google Scholar 

  • Hodges, A.: 1983. Alan Turing: The Enigma, Simon and Schuster, New York.

    Google Scholar 

  • Householder, A. S.: 1941a, ‘A Theory of Steady-State Activity in Nerve-Fiber Networks: I. Definitions and Preliminary Lemmas’, Bulletin of Mathematical Biophysics 3, 63–69.

    Google Scholar 

  • Householder, A. S.: 1941b, ‘A Theory of Steady-State Activity in Nerve-Fiber Networks II: The Simple Circuit’, Bulletin of Mathematical Biophysics 3, 105–112.

    Google Scholar 

  • Householder, A. S.: 1941c, ‘A Theory of Steady-State Activity in Nerve-Fiber Networks III: The Simple Circuit in Complete Activity’, Bulletin of Mathematical Biophysics 3, 137–140.

    Google Scholar 

  • Householder, A. S.: 1942, ‘A Theory of Steady-State Activity in Nerve-Fiber Networks IV: N Circuits with a Common Synapse’, Bulletin of Mathematical Biophysics 4, 7–14.

    Google Scholar 

  • Householder, A. S. and H. D. Landahl: 1945, Mathematical Biophysics of the Central Nervous System, Principia, Bloomington.

    Google Scholar 

  • Kay, L.: 2001, ‘From Logical Neurons to Poetic Embodiments of Mind: Warren S. McCulloch's Project in Neuroscience’, Science in Context 14(4), 591–614.

    Google Scholar 

  • Kleene, S. C.: 1956, ‘Representation of Events in Nerve Nets and Finite Automata’, in C. E. Shannon and J. McCarthy (eds.), Automata Studies, Princeton University Press, Princeton, NJ, pp. 3–42.

    Google Scholar 

  • Koch, C.: 1999. Biophysics of Computation: Information Processing in Single Neurons, Oxford University Press, New York.

    Google Scholar 

  • Koch, C. and I. Segev: 2000, ‘The role of single neurons in information processing’, Nature Neuroscience Supplement 3, 1171–1177.

    Google Scholar 

  • Köhler, W.: 1938, The Place of Value in a World of Fact, Liveright, New York.

    Google Scholar 

  • Kubie, L.: 1930, ‘A Theoretical Application to some Neurological Problems of the Properties of Excitation Waves which Move in Closed Circuits’, Brain 53(2), 166–177.

    Google Scholar 

  • Landahl, H. D., W. S. McCulloch, and W. H. Pitts: 1943, ‘A Statistical Consequence of the Logical Calculus of Nervous Nets’, Bulletin of Mathematical Biophysics 5, 135–137.

    Google Scholar 

  • Lettvin, J. L.: 1989a, ‘Introduction’, in R. McCulloch (ed.), Collected Works of Warren S. McCulloch, Vol. 1. Intersystems, Salinas, CA, 7–20.

    Google Scholar 

  • Lettvin, J. L.: 1989b, ‘Strychnine Neuronography’, in R. McCulloch (ed.), Collected Works of Warren S. McCulloch, Vol. 1. Intersystems, Salinas, CA, 50–58.

    Google Scholar 

  • Lettvin, J. L. and W. H. Pitts: 1943, ‘A Mathematical Theory of Affective Psychoses’, Bulletin of Mathematical Biophysics 5, 139–148.

    Google Scholar 

  • McCulloch, W. S.: 1940, ‘Joannes Gregorius Dusser de Barenne’, Yale Journal of Biology and Medicine 12, 743–746.

    Google Scholar 

  • McCulloch, W. S.: 1961, ‘What Is a Number, that a Man May Know It, and a Man, that He May Know a Number?’ General Semantics Bulletin 26/27, 7-18. Reprinted in McCulloch 1965, pp. 1–18

    Google Scholar 

  • McCulloch, W. S.: 1965, Embodiments of Mind, MIT Press, Cambridge, MA.

    Google Scholar 

  • McCulloch, W. S.: 1974, ‘Recollections of the Many Sources of Cybernetics’, ASC Forum VI(2), 5–16.

    Google Scholar 

  • McCulloch, W. S. and W. H. Pitts: 1943, ‘A Logical Calculus of the Ideas Immanent in Nervous Activity’, Bulletin of Mathematical Biophysics 7, 115–133. Reprinted in McCulloch 1964, pp. 16-39.

    Google Scholar 

  • McGee, V.: 1991, ‘We Turing Machines Aren't Expected-Utility Maximizers (Even Ideally)’, Philosophical Studies 64, 115–123.

    Google Scholar 

  • Moreno Díaz, R. and J. Mira (eds.): 1996, Brain Processes, Theories, and Models: An International Conference in Honor of W. S. McCulloch 25 Years after His Death, MIT Press, Cambridge, MA.

    Google Scholar 

  • Patterson, D. A. and J. L. Hennessy: 1998, Computer Organization and Design: The Hardware/Software Interface, Morgan Kauffman, San Francisco.

    Google Scholar 

  • Perkel, D. H.: 1988, ‘Logical Neurons: The Enigmatic Legacy of Warren McCulloch’, Trends in Neurosciences 11(1), 9–12.

    Google Scholar 

  • Piccinini, G.: 2000, ‘Turing's Rules for the Imitation Game’, Minds and Machines 10(4), 573–582.

    Google Scholar 

  • Piccinini, G.: 2003a, Computations and Computers in the Sciences of Mind and Brain, Doctoral dissertation, Department of History and Philosophy of Science, University of Pittsburgh, Pittsburgh, PA. URL = <http://etd.library.pitt.edu/ETD/ available/etd-08132003-155121/>

  • Piccinini, G.: 2003b, ‘Alan Turing and the Mathematical Objection’, Minds and Machines 13(1), 23–48.

    Google Scholar 

  • Piccinini, G.: (forthcoming a), ‘Functionalism, Computationalism, and Mental Contents’, Canadian Journal of Philosophy.

  • Piccinini, G.: (forthcoming b), ‘Functionalism, Computationalism, and Mental States’, Studies in the History and Philosophy of Science.

  • Pitts, W. H.: 1942a, ‘Some Observations on the Simple Neuron Circuit’, Bulletin of Mathematical Biophysics 4, 121–129.

    Google Scholar 

  • Pitts, W. H.: 1942b, ‘The Linear Theory of Neuron Networks: The Static Problem’, Bulletin of Mathematical Biophysics 4, 169–175.

    Google Scholar 

  • Pitts, W. H.: 1943a, ‘The Linear Theory of Neuron Networks: The Dynamic Problem’, Bulletin of Mathematical Biophysics 5, 23–31.

    Google Scholar 

  • Pitts, W. H.: 1943b, ‘A General Theory of Learning and Conditioning: Part I’, Psychometrika 8(1), 1–18.

    Google Scholar 

  • Pitts, W. H.: 1943c, ‘A General Theory of Learning and Conditioning: Part II’, Psychometrika 8(2), 131–140.

    Google Scholar 

  • Pylyshyn, Z. W.: 1984, Computation and Cognition. MIT Press, Cambridge, MA.

    Google Scholar 

  • Rashevsky, N.: 1935, ‘oundations of Mathematical Biophysics’, Philosophy of Science 1, 176–196.

    Google Scholar 

  • Rashevsky, N.: 1936a, ‘Mathematical Biophysics and Psychology’, Psychometrika 1(1), 1–26.

    Google Scholar 

  • Rashevsky, N.: 1936b, ‘Physico-Mathematical Methods in Biological and Social Sciences’, Erkenntnis 6, 357–365.

    Google Scholar 

  • Rashevsky, N.: 1936c, ‘Physico-mathematical Methods in Biology’, Biological Reviews 11, 345–363.

    Google Scholar 

  • Rashevsky, N.: 1938, Mathematical Biophysics: Physicomathematical Foundations of Biology, University of ChicagoPress, Chicago.

    Google Scholar 

  • Rashevsky, N.: 1940, Advances and Applications of Mathematical Biology, University of Chicago Press, Chicago.

    Google Scholar 

  • Rieke, F., et al.: 1997. Spikes: Exploring the Neural Code, MIT Press, Cambridge, MA.

    Google Scholar 

  • Rosenblueth, A., N. Wiener, and J. Bigelow: 1943, ‘Behavior, Purpose, and Teleology’, Philosophy of Science 10, 18–24.

    Google Scholar 

  • Shanker, S. G.: 1995, ‘Turing and the Origins of AI’, Philosophia Mathematica 3, 52–85.

    Google Scholar 

  • Shannon, C. E. and J. McCarthy: 1956, Automata Studies. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Shapiro, S.: 1998, ‘Church's Thesis’, in E. Craig (ed.), Routledge Encyclopedia of Philosophy, V. 2, Routledge, London, pp. 351–355.

    Google Scholar 

  • Sherrington, C. S.: 1940, Man on His Nature, Cambridge University Press, Cambridge.

    Google Scholar 

  • Smalheiser, N. R.: 2000, ‘Walter Pitts’, Perspectives in Biology and Medicine 43(2), 217–226.

    Google Scholar 

  • Turing, A. M.: 1936-37 [1965], ‘On Computable Numbers, with an Application to the Entscheidungsproblem’, in M. Davis (ed.), The Undecidable, Raven, Ewlett, pp. 116–154.

    Google Scholar 

  • Turing, A. M.: 1947, ‘Lecture to the London Mathematical Society on 20 February 1947’, in D. Ince (ed.), Mechanical Intelligence. North-Holland, Amsterdam, pp. 87–105.

    Google Scholar 

  • Turing, A. M.: 1948, ‘Intelligent Machinery’, in D. Ince (ed.) Mechanical Intelligence. North-Holland, Amsterdam, pp. 87–106.

    Google Scholar 

  • Turing, A. M.: 1950, ‘Computing Machinery and Intelligence’, Mind 59, 433–460.

    Google Scholar 

  • von Neumann, J.: 1945, ‘First Draft of a Report on the EDVAC’, Technical Report, Moore School of Electrical Engineering, University of Pennsylvania, Philadelphia, PA.

  • von Neumann, J.: 1951, ‘The General and Logical Theory of Automata’, in L. A. Jeffress (ed.), Cerebral Mechanisms in Behavior. Wiley, New York, pp. 1–41.

    Google Scholar 

  • Webb, J. C.: 1980, Mechanism, Mentalism, and Metamathematics, Reidel, Dordrecht.

    Google Scholar 

  • Wiener, N.: 1948, Cybernetics or Control and Communication in the Animal and the Machine, MIT Press, Cambridge, MA.

    Google Scholar 

  • Woodger, J. H.: 1937, The Axiomatic Method in Biology, Cambridge University Press, Cambridge.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Piccinini, G. The First Computational Theory of Mind and Brain: A Close Look at Mcculloch and Pitts's “Logical Calculus of Ideas Immanent in Nervous Activity”. Synthese 141, 175–215 (2004). https://doi.org/10.1023/B:SYNT.0000043018.52445.3e

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:SYNT.0000043018.52445.3e

Navigation