Skip to main content

Advertisement

Log in

Similarities between meta-heuristics algorithms and the science of life

  • Original Paper
  • Published:
Central European Journal of Operations Research Aims and scope Submit manuscript

Abstract

In this paper, we show the functional similarities between Meta-heuristics and the aspects of the science of life (biology): (a) Meta-heuristics based on gene transfer: Genetic algorithms (natural evolution of genes in an organic population), Transgenic Algorithm (transfers of genetic material to another cell that is not descending); (b) Meta-heuristics based on interactions among individual insects: Ant Colony Optimization (on interactions among individuals insects, Ant Colonies), Firefly algorithm (fireflies of the family Lampyridze), Marriage in honey bees Optimization algorithm (the process of reproduction of Honey Bees), Artificial Bee Colony algorithm (the process of recollection of Honey Bees); and (c) Meta-heuristics based on biological aspects of alive beings: Tabu Search Algorithm (Classical Conditioning on alive beings), Simulated Annealing algorithm (temperature control of spiders), Particle Swarm Optimization algorithm (social behavior and movement dynamics of birds and fish) and Artificial Immune System (immunological mechanism of the vertebrates).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbass HA (2001) MBO: marriage in honey bees optimization-a haplometrosis polygynous swarming approach. Proc Congr Evolut Comput 1: 207–214. doi:10.1109/CEC.2001.934391

    Google Scholar 

  • Barricelli NA (1954) Esempi numerici di processi di evoluzione. Methodos 6(21–22): 45–68

    Google Scholar 

  • Boettcher S, Percus AG (1999) Extremal optimization: methods derived from co-evolution. Proc Genet Evolut Comput Conf 1: 825–832

    Google Scholar 

  • Brownlee J (2007) Optimization algorithm toolkit, http://optalgtoolkit.sourceforge.net. Accessed 29 January 2010

  • Černý V (1985) A thermodynamical approach to the travelling salesman problem: an efficient simulation algorithm. J Optim Theory Appl 45: 41–51. doi:10.1007/BF00940812

    Article  Google Scholar 

  • Cirasella J, Johnson DS, McGeoch LA, Zhang W (2001) The asymmetric traveling salesman problem: algorithms, instance generators, and tests. In: Buchsbaum AL, Snoeyink J (eds) Third international workshop. ALENEX 2001, Springer, New York. Lecture notes in computer science vol 2153, pp 32–59

  • Cutello V, Narzisi G, Nicosia G, Pavone M (2005) Clonal selection algorithms: a comparative case study using effective mutation potentials, optIA versus CLONALG. In: 4th international conference on artificial immune systems-ICARIS 2005, Banff, Canada. Springer, New York. LNCS vol 3627, pp 13–28, 14–17

  • Díaz-Parra O, Cruz-Chávez MA (2008) Evolutionary algorithm with intelligent mutation operator that solves the vehicle routing problem of clustered classification with time windows. Polish J Environ Stud 17(4C), Hard pp 91–95

    Google Scholar 

  • Dorigo M (1992) Optimization, learning and natural algorithms, Ph.D. thesis, Politecnico di Milano, Italy

  • Dorigo M (2009) Metaheuristics network website 2000. http://www.metaheuristics.net/. Visited in January

  • Dorigo M, Di Caro G, Gambardella LM (1999) Ant algorithms for discrete optimization. Artif Life 5(2): 137–172. doi:10.1162/106454699568728

    Article  Google Scholar 

  • Eberhart RC, Kennedy J (1995) A new optimizer using particle swarm theory. In: Proceedings of the sixth international symposium on micromachine and human science, Nagoya, Japan pp 39–43

  • Farmer JD, Packard N, Perelson A (1986) The immune system, adaptation and machine learning. Phys D 22(1-3): 187–204. doi:10.1016/0167-2789(81)90072-5

    Article  Google Scholar 

  • Feo TA, Resende MGC (1995) Greedy randomized adaptive search procedure. J Global Optim 6(2): 109–133. doi:10.1007/BF01096763

    Article  Google Scholar 

  • Fogel L, Owens AJ, Walsh MJ (1966) Artificial intelligence through simulated evolution. Wiley, New York

    Google Scholar 

  • Gambardella LM, Dorigo M (1996) Solving symmetric and asymmetric TSPs by ant colonies. In: Proceedings of IEEE international conference on evolutionary computation pp 622–627

  • Geem ZW, Kim JH, Loganathan GV (2001) A new heuristic optimization algorithm: harmony search. Simulation 76(2): 60–68. doi:10.1177/003754970107600201

    Article  Google Scholar 

  • Gladyshev EA, Meselson M, Arkhipova IR (2008) Massive horizontal gene transfer in bdelloid rotifers. Science 320: 1210–1213

    Article  Google Scholar 

  • Glover F (1986) Future paths for integer programming and links to artificial intelligence. Comput Oper Res 13(5): 533–549. doi:10.1016/0305-0548(86)90048-1

    Article  Google Scholar 

  • Glover F (1989) Tabu search: part I. ORSA J Comput 1: 190–206

    Article  Google Scholar 

  • Glover F (1990) Tabu search: a tutorial. Interfaces 20(4): 74–94

    Article  Google Scholar 

  • Hansen P, Mladenovi N (2001) Variable neighborhood search: principles and applications. Euro J Oper Res 130(3): 449–467. doi:10.1016/S0377-2217(00)00100-4

    Article  Google Scholar 

  • Hastings WK (1970) Monte Carlo sampling methods using markov chains and their applications. Biometrika 57(1): 97–109

    Article  Google Scholar 

  • Helfman G, Collette B, Facey D (1997) The diversity of fishes. Blackwell Publishing, Oxford

    Google Scholar 

  • Hess WH (1920) Notes on the biology of some common Lampyridae. Biol Bull 38(2): 39–76

    Article  Google Scholar 

  • Holland JH (1975) Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor

    Google Scholar 

  • Karaboga D (2005) An idea based on honey bee swarm for numerical optimization, technical report-TR06, Erciyes University, Engineering Faculty, Computer Engineering Department

  • Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: Proceedings of IEEE international conference on neural networks, Piscataway, NJ, pp 1942–1948. doi:10.1109/ICNN.1995.488968

  • Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science, New Series 220(4598):671-680. Stable http://www.jstor.org/stable/1690046

  • Koza JR (1990) Non-linear genetic algorithms for solving problems. United States Patent 4,935,877. Filed May 20, 1988. Issued June 19

  • Lederberg J, Tatum EL (1946) Novel genotypes in mixed cultures of biochemical mutants of bacteria. Cold Spring Harbor Symp Quant Biol 11:113–114

    Google Scholar 

  • Lucic P (2002) Modelling transportation problems using concepts of swarm intelligence and soft computing, Ph.D. thesis, Faculty of the Virginia Polytechnic Institute and State University, Virginia

  • Margullis L (1967) On the origin of mitosing Cells. J Theor Bio 14(3): 255–274

    Google Scholar 

  • Margullis L (1970) Origin of eukaryotic cells. Yale University Press, USA

    Google Scholar 

  • Margulis L, Sagan D (1995) What is life? Simon & Schuster. New York

  • Martello S, Toth P (1991) Knapsack problems: algorithms and computer implementations. Wiley, England, pp 221–239

    Google Scholar 

  • Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) Equation of state calculations by fast computing machines. J Chem Phys 21: 1087–1092. doi:10.1063/1.1699114

    Article  Google Scholar 

  • Mitchel M (1999) An introduction to genetic algorithms. MIT Press, Cambridge

    Google Scholar 

  • Mladenović N, Hansen P (1997) Variable neighborhood search. Comput Oper Res 24(11): 1097–1100. doi:10.1016/S0305-0548(97)00031-2

    Article  Google Scholar 

  • Moscato P (1989) On evolution, search, optimization, genetic algorithms and martial arts: towards memetic algorithms, Caltech concurrent computation program, C3P Report 826

  • Moyson F, Manderick B (1988) The collective behaviour of ants: an example of self-organization in massive parallelism. In: Actes de AAAI spring symposium on parallel models of intelligence, Stanford, Californie

  • Nakrani S, Tovey S (2004) On honey bees and dynamic server allocation in internet hosting centers. Adapt Behav 12(1–3): 223–240. doi:10.1177/105971230401200308

    Article  Google Scholar 

  • Or I (1976) Traveling salesman type combinatorial problems y their relations to the logistics of blood banking. Ph.D. Thesis. Department of Industrial Engineering y Management Sciences, Northwestern Univ

  • Park JM, Deem MW (2007) Phase diagrams of quasispecies theory with recombination and horizontal gene transfer. Phys Rev Lett 98(5): 1–4. doi:10.1103/PhysRevLett.98.058101

    Google Scholar 

  • Pavlov I (1972) Conditioned reflexes: an investigation of the physiological activity of the cerebral cortex. Oxford University Press, Oxford

    Google Scholar 

  • Rechenberg I (1965) Cybernetic solution path of an experimental problem. Royal Aircraft Establishment Library Translation, Farnborough

  • Reynolds CW (1987) Flocks, herds, and schools: a distributed behavioral model. Comput Gr (ACM SIGGRAPH ‘87 Conf Proc) 21(4): 25–34. doi:10.1145/37401.37406

    Article  Google Scholar 

  • Robbins H, Monro S (1951) A stochastic approximation method. Ann Math Stat 22: 400–407

    Article  Google Scholar 

  • Rubinstein RY (1997) Optimization of computer simulation models with rare events. Euro J Oper Res 99: 89–112. doi:10.1016/S0377-2217(96)00385-2

    Article  Google Scholar 

  • Ruiz-Vanoye JA (2010) REPOsitory of Combinatorial Optimization Problems & meta-heuristics (REPOCOP), http://repocop.ruizvanoye.com. Accessed 29 January 2010

  • Ruiz-Vanoye JA, Díaz-Parra O (2010) Transgenic algorithm for the solution of the cargo management and scheduling of transport vehicles. Unpublished manuscript

  • Smith SF (1980) A learning system based on genetic adaptive algorithms, Ph.D. dissertation in University of Pittsburgh

  • Srinivas M, Patnaik LM (1994) Adaptive probabilities of crossover and mutation in genetic algorithms. IEEE Trans Syst Man Cybern 24(4): 656–667

    Article  Google Scholar 

  • Storn R, Price K (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Global Optim 11(4): 341–359. doi:10.1023/A:1008202821328

    Article  Google Scholar 

  • Squire LR, Stark CE, Clark RE (2004) The medial temporal lobe. Annu Rev Neurosci 27: 279–306

    Article  Google Scholar 

  • Wen-liang Z, Jun Z, Wei-neng C (2007) A novel discrete particle swarm optimization to solve traveling salesman problem. In: IEEE congress on evolutionary computation, CEC, pp 3283–3287. doi:10.1109/CEC.2007.4424894

  • Wright S (1977) Evolution and genetics of populations, vol. 3. Experimental results and evolutionary deductions. University of Chicago Press, Chicago

    Google Scholar 

  • Yang XS (2008) Firefly algorithm (chapter 8), Nature-inspired metaheuristic algorithms. Luniver Press, Beckington

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge A. Ruiz-Vanoye.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruiz-Vanoye, J.A., Díaz-Parra, O. Similarities between meta-heuristics algorithms and the science of life. Cent Eur J Oper Res 19, 445–466 (2011). https://doi.org/10.1007/s10100-010-0135-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10100-010-0135-x

Keywords

Navigation