Skip to main content

Advertisement

Log in

Long-lasting modulation of human motor cortex following prolonged transcutaneous electrical nerve stimulation (TENS) of forearm muscles: evidence of reciprocal inhibition and facilitation

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Several lines of evidence indicate that motor cortex excitability can be modulated by manipulation of afferent inputs, like peripheral electrical stimulation. Most studies in humans mainly dealt with the effects of prolonged low-frequency peripheral nerve stimulation on motor cortical excitability, despite its being known from animal studies that high-frequency stimulation can also result in changes of the cortical excitability. To investigate the possible effects of high-frequency peripheral stimulation on motor cortical excitability we recorded motor-evoked potentials (MEPs) to transcranial magnetic stimulation (TMS) of the left motor cortex from the right flexor carpi radialis (FCR), extensor carpi radialis (ECR), and first dorsal interosseous (FDI) in normal subjects, before and after transcutaneous electrical nerve stimulation (TENS) of 30 min duration applied over the FCR. The amplitude of MEPs from the FRC was significantly reduced from 10 to 35 min after TENS while the amplitude of MEPs from ECR was increased. No effects were observed in the FDI muscle. Indices of peripheral nerve (M-wave) and spinal cord excitability (H waves) did not change throughout the experiment. Electrical stimulation of the lateral antebrachial cutaneous nerve has no significant effect on motor cortex excitability. These findings suggest that TENS of forearm muscles can induce transient reciprocal inhibitory and facilitatory changes in corticomotoneuronal excitability of forearm flexor and extensor muscles lasting several minutes. These changes probably may occur at cortical site and seem to be mainly dependent on stimulation of muscle afferents. These findings might eventually lead to practical applications in rehabilitation, especially in those syndromes in which the excitatory and inhibitory balance between agonist and antagonist is severely impaired, such as spasticity and dystonia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alfieri V (1982) Electrical treatment of spasticity. Reflex tonic activity in hemiplegic patients and selected specific electrostimulation. Scand J Rehabil Med 14:177–182

    CAS  PubMed  Google Scholar 

  • Asanuma H, Larsen K, Yumiya H (1980) Peripheral input pathways to the monkey motor cortex. Exp Brain Res 38:349–355

    Article  CAS  PubMed  Google Scholar 

  • Bear MF, Malenka RC (1994) Synaptic plasticity: LTP and LTD. Curr Opinion Neurobiol 4:389–399

    Article  CAS  Google Scholar 

  • Bending J, Cleeves L (1990) Effect of electrical nerve stimulation on dystonic tremor. Lancet 336:1385–1386

    Article  CAS  Google Scholar 

  • Bertolasi L, Priori A, Tinazzi M, Bertasi V, Rothwell JC (1998) Inhibitory action of forearm flexor muscle afferents on corticospinal outputs to antagonist muscles in humans. J Physiol 511:947–956

    Article  CAS  PubMed  Google Scholar 

  • Brasil-Neto JP, Cohen LG, Pascual-Leone A, Jabir FK, Wall RT, Hallett M (1992) Rapid reversible modulation of human motor outputs after transient deafferentation of the forearm: a study with transcranial magnetic stimulation. Neurology 42:1302–1306

    CAS  PubMed  Google Scholar 

  • Brons JF, Woody CD (1980) Long-term changes in excitability of cortical neurons after Pavlovian conditioning and extinction. J Neurophysiol 44:605–615

    CAS  PubMed  Google Scholar 

  • Calford MB, Tweedale R (1988) Immediate and chronic changes in response of somatorysensor cortex in adult flying-fox after digit amputation. Nature 332:446–448

    Article  CAS  PubMed  Google Scholar 

  • Cohen LG, Bandinelli S, Findlay TW, Hallett M (1991) Motor reorganisation after upper limb amputation in man. Brain 114:615–627

    PubMed  Google Scholar 

  • Day BL, Dressler D, Maertens de Noordhout A, Marsden CD, Nakashima K, Rothwell JC, Thompson PD (1989) Electric and magnetic stimulation if human motor cortex: surface EMG and single motor unit responses. J Physiol 412:449–473

    CAS  PubMed  Google Scholar 

  • Devanne H, Lavoie BA, Capaday C (1997) Input–output properties and gain changes in the human corticospinal pathway. Exp Brain Res 114:329–338

    CAS  PubMed  Google Scholar 

  • Eisen A (1987) Electromyography in disorders of muscle tone. Can J Neurol Sci 14:501–505

    CAS  PubMed  Google Scholar 

  • Facchini S, Romani M, Tinazzi M, Aglioti SM (2002) Time related changes of excitability of the human motor system contingent upon immobilization of the ring and little fingers. Clin Neurophysiol 113:367–375

    Article  PubMed  Google Scholar 

  • Foley-Nolan D, Kinirons M, Coughlan RJ, O’Connor P (1990) Post whiplash dystonia well controlled by transcutaneous electrical nervous stimulation (TENS): case report. J Trauma 30:909–910

    CAS  PubMed  Google Scholar 

  • Goulet CG, Arsenault AB, Levin MF, Bourbonnais D, Lepage Y (1994) Absence of consistent effects of repetitive transcutaneous electrical nerve stimulation on soleus H-reflex in normal subjects. Arch Phys Med Rehabil 75:1132–1136

    Article  CAS  PubMed  Google Scholar 

  • Hallett M, Chen R, Ziemann U, Cohen LG (1999) Reorganization in motor cortex in amputees and in normal volunteers after ischemic limb deafferentation. Electroenceph Clin Neurophysiol Suppl 183–187

  • Hansson P, Lundeberg T (1999) Transcutaneous electrical nerve stimulation, vibration and acupuncture as pain-relieving measures. In: Wall PD, Melzacl R (eds) Textbook of pain. Churchill Livingston, London, pp 1341–1351

  • Hoshiyama M, Kakigi R (2000) After-effect of transcutaneous electrical nerve stimulation (TENS) on pain-related evoked potentials and magnetic fields in normal subjects. Clin Neurophysiol 111:717–724

    Article  CAS  PubMed  Google Scholar 

  • Kaelin-Lang A, Luft AR, Sawaki L, Burstein AH, Sohn YH, Cohen LG (2002) Modulation of human corticomotor excitability by somatosensory input. J Physiol 540:623–633

    Article  CAS  PubMed  Google Scholar 

  • Kaneko T, Caria MA, Asanuma H (1994a) Information processing within the motor cortex. I. Intracortical connections between neurons receiving somatosensory cortical input and motor output neurons of the cortex. J Comp Neurol 345:161–171

    CAS  PubMed  Google Scholar 

  • Kaneko T, Caria MA, Asanuma H (1994b) Information processing within the motor cortex. II. Responses of morphologically identified motor cortical cells to stimulation of the somatosensory cortex. J Comp Neurol 345:172–184

    CAS  PubMed  Google Scholar 

  • Kimura J (1993) Electrodiagnosis in diseases of nerve and muscle. FA Davis Company, Philadelphia, PA

  • Liepert J, Tegenthoff M, Malin JP (1995) Changes of cortical motor area size during immobilization. Electroenceph Clin Neurophysiol 97:382–386

    Article  CAS  PubMed  Google Scholar 

  • Linden DJ (1994) Long-term synaptic depression in the mammalian brain. Neuron 12:457–472

    Article  CAS  PubMed  Google Scholar 

  • Macefield G, Burke D (1991) Long-lasting depression of central synaptic transmission following prolonged high-frequency stimulation of cutaneous afferent: a mechanism for post-vibratory hypaesthesia. Electroenceph Clin Neurophysiol 78:150–158

    Article  CAS  PubMed  Google Scholar 

  • Mercuri B, Wassermann EM, Manganotti P, Ikoma K, Samii A, Hallett M (1996) Cortical modulation of spinal excitability: an F-wave study. Electroenceph Clin Neurophysiol 101:16–24

    Article  CAS  PubMed  Google Scholar 

  • Miller TA, Newall AR, Jackson DA (1995) H-reflex in the upper extremity and the effects of voluntary contraction. Electromyogr Clin Neurophysiol 35:121–128

    CAS  PubMed  Google Scholar 

  • Mima T, Oga T, Rothwell J, Satow T, Yamamoto J, Toma K, Fukuyama H, Shibasaki H, Nagamine T (2004) Short-term high-frequency transcutaneous electrical nerve stimulation decrease human motor cortex excitability. Neurosci Lett 355:85–88

    Article  CAS  PubMed  Google Scholar 

  • Nudo RJ, Milliken GW, Jenkins WM, Merzenich MM (1996) Use-dependent alterations of movement representations in primary motor cortex of adult squirrel monkeys. J Neurosci 16:785–807

    CAS  PubMed  Google Scholar 

  • Pascual-Leone A, Cohen LG, Brasil-Neto JP, Hallet M (1994) Non invasive differentiation of motor cortical representation of hand muscles by mapping of optimal current directions. Electroenceph Clin Neurophysiol 93:42–48

    Article  CAS  PubMed  Google Scholar 

  • Porter R, Lemon R (1995) In: Physiological Society of Great Britain (ed) Corticospinal function and voluntary movement, vol 45. Clarendon Press, Oxford

  • Preston DC, Shapiro BE (1998) Routine upper extremity and facial nerve conduction techniques. In: Preston DC, Shapiro BE (eds) From electromyography and neuromuscular disorders. Clinical-electrophysiologic correlations. Butterworth–Heinemann, Boston, pp 117–121

  • Recanzone GH, Allard TT, Jenkins WM, Merzenich MM (1990) Receptive-field changes induced by peripheral nerve stimulation in SI of adult cats. J Neurophysiol 63:1213–1225

    CAS  PubMed  Google Scholar 

  • Ridding MC, McKay DR, Thompson PD, Miles TS (2001) Changes in corticomotor representations induced by prolonged peripheral nerve stimulation in humans. Clinical Neurophysiology 112:1461–1469

    Article  CAS  PubMed  Google Scholar 

  • Ridding MC, Taylor JL (2001) Mechanism of motor-evoked potential facilitation following prolonged dual peripheral and central stimulation in humans. J Physiology 537:623–631

    Article  CAS  Google Scholar 

  • Rosenkranz K, Altenmüller E, Siggelkow S, Dengler R (2000) Alteration of sensimotor integration in musician’s cramp: impaired focusing of proprioception. Clin Neorophysiol 111:2040–2045

    Article  CAS  Google Scholar 

  • Stanton-Hicks M, Salamon J (1997) Stimulation of the central and peripheral nervous system for the control of pain. J Clin Neurophysiol 14:46–62

    Article  CAS  PubMed  Google Scholar 

  • Stefan K, Kunesch E, Cohen LG, Benecke R, Classen J (2000) Induction of plasticity in the human motor cortex by paired associative stimulation. Brain 123:572–584

    Article  PubMed  Google Scholar 

  • Terao Y, Ugawa J, Hanajima R, Furubayashi T, Machii K, Enomoto H, Shiio J, Mochizuchi H, Uesugi H, Kanazawa L (1999) Air-puff-induced facilitation of motor cortical excitability studied in patient with discrete brain lesion. Brain 122:2259–2277

    Article  PubMed  Google Scholar 

  • Walsh DM, Foster NE, Baxter GD, Allen JM (1995) Transcutaneous electrical nerve stimulation. Relevance of stimulation parameters to neurophysiological and hypoalgesic effects. Am J Phys Med Rehabil 74:199–206

    CAS  PubMed  Google Scholar 

  • Ziemann U, Lönnecker S, Steinhoff BJ, Paulus W (1996) Effects of antiepileptic drugs on motor cortex excitability in humans: a transcranial magnetic stimulation study. Ann Neurol 40:367–378

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Tinazzi.

Additional information

M. Tinazzi and S. Zarattini contributed equally to the work

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tinazzi, M., Zarattini, S., Valeriani, M. et al. Long-lasting modulation of human motor cortex following prolonged transcutaneous electrical nerve stimulation (TENS) of forearm muscles: evidence of reciprocal inhibition and facilitation. Exp Brain Res 161, 457–464 (2005). https://doi.org/10.1007/s00221-004-2091-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-004-2091-y

Keywords

Navigation