Skip to main content

Central Nervous System Circuitry and Peripheral Neural Sympathetic Activity Responsible for Essential Hypertension

Buy Article:

$68.00 + tax (Refund Policy)

Both clinical and experimental studies dealing with patients affected by idiopathic or essential hypertension (EH) are devoted to the great deal of physiological, pharmacological and pathological as well as therapeutical issues of EH. However, most articles devoted to EH do not refer to the central nervous system mechanisms underlying this disease and the channels which allow that these mechanisms are funneled to the peripheral autonomic nervous system and trigger this cardiovascular disorder. In the present review article we attempted to reach this target devoted to the central nervous system circuitry involved in the cardiovascular pathophysiology. We postulated that EH depends on the predominance of the binomial A5 noradrenergic (NA) nucleus + median raphe serotonergic (5-HT) nucleus over the (A6)-NA + dorsal raphe- 5HT nuclei. This hypothesis receives additional support from our results obtained throughout the neuropharmacological therapy of this type of neurophysiological disorder. Our therapeutical strategy is addressed to enhance the activity of the (A6)-NA + dorsal raphe-5HT binomial circuitry.





Keywords: Blood pressure; acetylcholine; adrenal system; adrenaline; central neurotransmitters; locus coeruleus; monoaminergic system; noradrenaline; serotonin

Document Type: Research Article

Affiliations: Apartado 80.983, Caracas 1080-A, Venezuela.

Publication date: 01 November 2006

More about this publication?
  • Current Neurovascular Research (CNR) provides a cross platform for the publication of scientifically rigorous research that addresses disease mechanisms of both neuronal and vascular origins in neuroscience. The journal serves as an international forum for the publication of novel and pioneering original work as well as timely neuroscience research reviews in the disciplines of cell developmental disorders, plasticity, and degeneration that bridge the gap between basic science research and clinical discovery. CNR emphasizes the elucidation of disease mechanisms, both cellular and molecular, which can impact the development of unique therapeutic strategies for neuronal and vascular disorders.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content